
TOPS-10/TOPS-20

RMS Reference Manual

Version 1

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

Actual distribution of the software described in this document is
subject to terms and conditions to be announced in some future date by
Digital Equipment Corporation.

DIGITAL assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by DIGITAL or its
affiliated companies.

This software is furnished to purchaser under a license to use on a
single computer system and can be copied (with inclusion of DIGITAL's
copyright notice) only for use in such system, except as may otherwise
be provided in writing by DIGITAL.

 COPYRIGHT 1980, 1981, DIGITAL EQUIPMENT CORP., MAYNARD, MASS.

Page 2

CONTENTS

Page

CHAPTER 1 OVERVIEW OF RMS 1-1

1.1 OVERVIEW OF RECORD MANAGEMENT 1-1
1.2 INTRODUCTION TO RMS 1-1
1.3 RMS FACILITIES 1-2
1.4 RMS CONCEPTS 1-3

CHAPTER 2 PROPERTIES OF RMS RECORD FILES 2-1

2.1 SEQUENTIAL FILES 2-1
2.2 RELATIVE FILES 2-2
2.2.1 Sequential Access To Relative Files 2-3
2.2.2 Random Access To Relative Files 2-3
2.3 INDEXED FILES 2-3
2.3.1 Sequential Access To Indexed Files 2-4
2.3.2 Key Access To Indexed Files 2-4
2.3.2.1 Key Matches 2-4
2.3.2.2 Key Content 2-5
2.3.3 Indexes 2-5
2.3.4 Format Of A Record File Address (RFA) In

An Indexed File 2-8
2.4 INDEXED FILE EFFICIENCY 2-8
2.4.1 Key Access Efficiency 2-8
2.4.1.1 Determining Number Of Levels 2-8
2.4.1.2 Shaping Your Index 2-10
2.4.2 Write Access Efficiency 2-10

CHAPTER 3 RMS FILE MANAGEMENT UTILITY 3-1

3.1 RULES OF OPERATION 3-1
3.1.1 Command Format 3-1
3.1.2 Command Status 3-2
3.2 CREATING A FILE 3-3
3.3 FILE MANIPULATION 3-3
3.4 MANIPULATING DATA IN A FILE 3-3
3.5 FILE SCANNING 3-4
3.6 COMMAND DESCRIPTIONS 3-5
3.6.1 CHANGE Command 3-7

Page 3

CONTENTS (CONT.)

Page

3.6.2 CLOSE Command 3-10
3.6.3 DEFINE DATAFIELD Command 3-11
3.6.4 Defining File Attributes And The DEFINE

FILE Command 3-13
3.6.5 DELETE Command 3-16
3.6.6 DISPLAY Command 3-17
3.6.7 FIX Command 3-19
3.6.8 INFORMATION Command 3-20
3.6.9 OPEN Command 3-21
3.6.10 REDEFINE Command 3-23
3.6.11 SET Command 3-24
3.6.12 SPACE Command 3-27
3.6.13 UNCLUTTER Command 3-28
3.6.14 VERIFY Command 3-29
3.6.15 Secondary Commands 3-31
3.7 RECORDS-TO-USE CLAUSE 3-32
3.8 THE REPORT FILE 3-33
3.8.1 DISPLAY OUTPUT 3-33
3.8.2 File-Scanning Output 3-34

CHAPTER 4 FORMAT OF AN RMS RECORD FILE 4-1

4.1 PROLOGUE SECTION 4-1
4.1.1 File Descriptor For File Argument Block

(FAB) 4-1
4.1.2 Key Descriptor For Extended Argument Block

(XAB) 4-2
4.2 DATA SECTION OF SEQUENTIAL AND RELATIVE

FILES 4-4
4.3 DATA SECTION OF AN INDEXED FILE 4-5
4.3.1 Bucket Headers 4-6
4.3.2 Entries in a Primary-Data Bucket 4-6
4.3.3 Entries in an Index Bucket 4-7
4.3.4 Entries in a Secondary-Data Bucket 4-8

CHAPTER 5 RMS STATUS CODES 5-1

APPENDIX A USAGE OF AN RMS FILE FROM BOTH BASIC+2 AND
COBOL-74 A-1

INDEX Index-1

Page 4

FIGURES

FIGURE 2-1 Sequential File Organization 2-1
2-2 Relative File Organization 2-2
2-3 Storage of Keys in an Indexed File 2-6
2-4 Buckets in Indexed Files 2-7
4-1 RMS Record File Format 4-5

TABLES

TABLE 5-1 RMS Status Codes 5-2
5-2 STV Values for ER$UDF 5-9

Page 5

PREFACE_______

The TOPS-10/TOPS-20 RMS Reference Manual is:

o An introductory manual to illustrate basic file concepts
and their application to Record Management Services (RMS).

o A reference manual to define the components of RMS, its
relationship with user written programs (COBOL-74,
BASIC+2), and descriptions of RMSUTL commands.

The information in this document is organized as follows:

o Chapter 1 provides an overview of RMS, its facilities, and
its concepts.

o Chapter 2 provides a description of the properties of RMS
files.

o Chapter 3 provides a description of the RMS file
management utility, RMSUTL, and the use of this utility to
create and access RMS files.

o Chapter 4 provides descriptions of the sections within RMS
files, based on their organization.

o Chapter 5 provides descriptions of all RMS status codes.

o Appendix A provides the rules for using an RMS file from
both BASIC-PLUS-2 and COBOL-74.

RMS provides record management for COBOL-74 (Version 12B) and
BASIC-PLUS-2 (Version 2.1) (TOPS-20 only). COBOL-74 programmers
should reference the COBOL-74 Language Reference Manual (AA-5059B-TK).
BASIC-PLUS-2 programmers should reference the TOPS-20 BASIC-PLUS-2
Language Manual (AA-H654A-TM). Both of these manuals provide
additional information on creating and maintaining RMS files.

Page 6

If you find any errors in this manual, please write them on a separate
sheet of paper and address it to:

DIGITAL EQUIPMENT CORPORATION
Software Documentation
200 Forest Street
MR1-2/L12
Marlborough, Massachusetts 01752

All reported errors will be corrected as soon as possible.

Conventions Used In This Manual

Symbol Meaning

<RET> Press the key labeled RETURN or CR.

<ESC> Press the key labeled ESC, ESCAPE, ALT, or PRE.

<CTRL/C> Press the keys labeled CTRL and C simultaneously.

CHAPTER 1

OVERVIEW OF RMS________ __ ___

1.1 OVERVIEW OF RECORD MANAGEMENT________ __ ______ __________

As a user writing application programs, you need to create programs
that will do some or all of the following:

1. Accept new input

2. Read or modify data

3. Produce output in some meaningful form

RMS provides generalized routines that are useful to you in writing
such programs.

1.2 INTRODUCTION TO RMS____________ __ ___

RMS is a file/record management system for TOPS-10/TOPS-20 (KL and KS)
systems. It provides an interface between the operating system and
user-developed application programs. User programs can be written in
COBOL-74 or BASIC-PLUS-2 (TOPS-20 only).

The RMS functions available from COBOL-74 are only those that result
from support of multikey indexed files in Level-2 ANSI COBOL-74. The
COBOL compiler and OTS automatically do the RMS setup operations and
calls needed to support the RMS-based language features. Thus, the
primary reference document for COBOL programmers wishing to use
multikey indexed files is the COBOL-74 Language Reference Manual. In
particular, these users should see Appendix I, Using Multikey Indexed
Files.

As with COBOL, BASIC and BASOTS automatically do the RMS setup
operations and calls needed to support the RMS-based language
features. Additionally all RMS file organizations are available
through BASIC-PLUS-2.

OVERVIEW OF RMS Page 1-2________ __ ___

RMSUTL is an interactive file management utility. With it, you can
examine and patch your RMS files. You can also define a file's
properties and create it using RMSUTL. (Refer to Chapter 3 for a
detailed description of RMSUTL.)

1.3 RMS FACILITIES___ __________

RMS provides a wide range of facilities. The file operations it
provides are:

1. Create file

2. Open existing file

3. Close file

4. Delete file

5. Truncate file (TOPS-20 only)

Stream files and record files are supported. Stream files are ASCII
text files, with or without line-sequence numbers. Record files may
be sequential, relative, or multikey indexed, and are described in
more detail in Chapter 2.

The record operations RMS supports are:

1. Put (create) record

2. Find and get record

3. Find record

4. Update existing record

5. Delete record

The access methods by which you can find a record are:

1. Sequential

2. Relative record number

3. Random by key (a value in a record)

However, some operations and access methods cannot be applied to all
file organizations (see Chapter 2).

OVERVIEW OF RMS Page 1-3________ __ ___

1.4 RMS CONCEPTS___ ________

Access Mode -- The method in which data records in a file are______ ____
retrieved. The access modes supported by RMS are sequential and
random.

Area -- An area is a region of a file with a particular bucket size.____
Thus, all RMS files consist of (at least) one area. For indexed
files, you may declare additional areas.

Bucket -- Data in an RMS file is organized into buckets. A bucket is______
the unit of physical I/O RMS uses. When RMS reads or writes a record,
it actually reads or writes the bucket(s) containing the record. A
bucket consists of one or more file pages (= 512 words). At present
however, multipage buckets can only be declared for indexed files.

Entry -- The data objects in a bucket are called entries. Thus,_____
records are one type of entry. Entries are numbered, and the entry
with the lowest offset in a bucket is entry 1. Entry numbers are not
names; if entry 3 is expunged from a bucket, then entry 4 "becomes"
entry 3.

File Organization -- The physical arrangement of records in a file____ ____________
when it is created. File organizations can be sequential, relative,
or multikey indexed.

ID -- A per-bucket unique ID is associated with each record in an__
indexed file. RMS assigns IDs in ascending sequence, starting with 1,
as records are put in a bucket.

Prologue -- The beginning of an RMS record file is called its prologue________
section. It is the repository of the file's attributes.

Random Access -- An access mode in which the program-specified value______ ______
of a key data item identifies the logical record that is to be
accessed in a relative or indexed file.

RFA -- When RMS puts a record in a file, it assigns it a "Record File___
Address" (RFA). You may think of an RFA as the physical location of a
record. RMS guarantees that no other record will be assigned this
location while the file remains open.

Sequential Access -- With sequential access, you do not directly__________ ______
identify the record you wish to access. Instead RMS chooses the
logical next record. Initially, when the file is opened, the current
record is the first record in the file. Also, except for sequential
files, it can be reset by a random access.

CHAPTER 2

PROPERTIES OF RMS RECORD FILES__________ __ ___ ______ _____

TOPS-10/TOPS-20 RMS supports a variety of file organizations, record
access modes, and record formats. The specific use of the file
determines which file organization is best. The sections that follow
describe the meanings of each of the above items.

Each file organization has unique properties. However, there are some
properties common to all record files.

o Sequential access is supported.

o Records can be deleted and/or updated.

o RMS assigns each record a record file address (RFA).

o A header is stored with each record.

o File has prologue.

2.1 SEQUENTIAL FILES__________ _____

In sequential file organization, records appear in the order in which
they were written to the file.

First	Second	Third	Fourth	Fifth	Sixth
Record	Record	Record	Record	Record	Record

Figure 2-1 Sequential File Organization

Thus, you can only add records to a sequential file at the current end
of the file.

PROPERTIES OF RMS RECORD FILES Page 2-2__________ __ ___ ______ _____

Only sequential access can be used in a sequential file, and physical
adjacency establishes the order in which RMS reads data records. In
particular, if you sequentially access a record in the file, the next
record is the physically following record.

When you update an existing record in a sequential file, you cannot
change the length of the record.

2.2 RELATIVE FILES________ _____

Relative file organization consists of a series of fixed-length
positions (or cells) that are consecutively numbered from 1 to n.
Position 1 is at the beginning of the file. Position 2 is next, and
so on. The number of a record is called its relative record number.

Relative Record Numbers
|
|

| | | | | |
| | | | | |
1 2 3 4 5 6
| | | | | |
| | | | | |
V V V V V V

Third	Empty	Second	First	Fourth	Fifth
Record	Cell	Record	Record	Record	Record
Written		Written	Written	Written	Written

Figure 2-2 Relative File Organization

This method of file organization is available on disk drives only.

Although each record in a relative file is assigned to a fixed-length
cell, the actual size of an individual record can be smaller than the
cell size. Different size records can be in the same file.

Relative file organization allows sequential and random access of
records. The relative record number of a record in a relative file is
the key value in random-access mode.

PROPERTIES OF RMS RECORD FILES Page 2-3__________ __ ___ ______ _____

2.2.1 Sequential Access To Relative Files__________ ______ __ ________ _____

When you use sequential-access mode in a relative file, physical order
establishes the order in which RMS reads and writes data records.

RMS recognizes whether record cells are empty or contain records.
When a program issues read requests in sequential-access mode for a
relative file, RMS searches successive cells until it finds one
containing a record.

When a program adds new records in sequential-access mode to a
relative file, the records are written to ascending relative cell
numbers. Each write operation causes RMS to place a record in the
cell whose record number is one higher than the record number of the
previous write operation. If the cell already contains a record, RMS
rejects the write operation and returns an error.

2.2.2 Random Access To Relative Files______ ______ __ ________ _____

In random-access mode, your program, not the file organization,
determines the order in which record processing occurs. Each program
request for a record must include the key value of the particular
record to be accessed.

When you use random-access mode in a relative file, you specify the
relative record number of the object record. If no record exists in
the specified cell on a retrieval request, RMS returns an error
indicator to the requesting program. Similarly, a program can
randomly store records in a relative file by identifying the cell in
the file that a record is to occupy (see Figure 2-2). If a write
operation specifies the relative record number of a cell that contains
a record, RMS returns an error indicator to the program.

One method of keeping track of each record's cell is to store records
based on a numeric value within the record. For example, an account
number could be equivalent to the relative record number.

2.3 INDEXED FILES_______ _____

An indexed file is a file in which a record can be randomly located
using arbitrary value(s) in the record. A portion of a record defined
for this purpose is called a key. An indexed file is distinguished
from a hashed-key file by the fact that the records are logically
sorted by each key as well.

An RMS indexed file has at least one key, called the primary key.
Optionally up to 255 "secondary" keys can also be defined. This is
referred to as a multikey indexed file. You describe keys to RMS just
once, when the file is created. RMS places the key descriptions in
the file's prologue, and thereafter uses the stored key descriptions
to support usage of the keys.

PROPERTIES OF RMS RECORD FILES Page 2-4__________ __ ___ ______ _____

2.3.1 Sequential Access To Indexed Files__________ ______ __ _______ _____

When you use sequential-access mode in an indexed file, the key you
choose establishes the order in which RMS presents data records to
your program. If a series of sequential reads is done, each
successive record contains a value in the specified key field that is
equal to or greater than that of the previous record. The chosen key
is called the "key-of-reference".

When you write records in an indexed file using sequential-access
mode, the primary keys in the records must be presented in ASCII
ascending order. If the keys are not in ascending order, an error is
returned to your program.

2.3.2 Key Access To Indexed Files___ ______ __ _______ _____

To do a key access, you specify a key of reference and a key value.
When RMS finds a matching key value in the specified index, it locates
the associated user data record and passes the record to the user
program. If there are multiple records containing the same key value,
the key access always finds the one that was written first. To access
the other records with the duplicate key value, you must do sequential
accesses.

In contrast to read requests, program requests to write records in an
indexed file do not require the separate specification of a key value
or index. This is because all the record's keys must be inserted in
their respective indexes. In this way, RMS insures that the record
can later be retrieved by any of its key values.

2.3.2.1 Key Matches - The key value specified on a key access can be___ _______
tailored to different circumstances. RMS supports the following four
types of key matches:

1. Exact key match

2. Approximate key match

3. Generic key match

4. Approximate generic key match

Exact key match means that RMS returns an error unless there is a
record in the file whose key precisely matches the value specified in
your program.

The approximate match facility allows your program to select either of
the following two relationships between the key of the record
retrieved and the key value specified by your program:

PROPERTIES OF RMS RECORD FILES Page 2-5__________ __ ___ ______ _____

1. Equal to or greater than

2. Greater than

The advantage of the first kind of match is that if the specified key
value does not exist in any record of the file, RMS returns the record
that contains the next higher key value. The second kind of match
specifies that the record with the next higher key value is returned
even if a record with the specified key value exists. You would use
this type of match if you were sequentially processing the file and
wanted to bypass the records whose key values equalled the one you
have in hand.

Generic key match means that the program needs only to specify an
initial portion of the key value. RMS returns to your program the
first occurrence of a record whose key value begins with what you
specified.

Approximate generic key match combines the second and third
techniques. For example, if "AAAAA" and "ZZZZZ" are the keys in a
file, specifying "BB" will locate the record that has "ZZZZZ" as a
key.

2.3.2.2 Key Content - A key value in a record is a specific series of___ _______
bytes within the record. A key must have the same byte size as the
file, and an indexed file may have byte sizes of 6, 7, or 9. Key
location and byte size are both established when an indexed file is
created.

The series of bytes comprising a key value may be composed of up to 8
key-segments and may be as long as 255 characters. Multi-segment keys
are useful when you wish to sort the records of a file upon more than
one logical field. For example, suppose you wish to periodically
print a file of car records sorted by make, model, and year of make.
This can be done by a sequential scan if you have defined a 3-segment
key whose key-segments are respectively make, model, and year of make.

2.3.3 Indexes_______

Buckets in an indexed file are linked together into trees. Such a
tree is called an index. RMS maintains an index for each key you
define for an indexed file (see Figure 2-4).

Each level of an index contains entries sorted on the index's key, and
buckets further from the root contain key values that are closer
together. This increase in detail continues to the leaf level where
every key value in the file appears (see Figure 2-3).

PROPERTIES OF RMS RECORD FILES Page 2-6__________ __ ___ ______ _____

Root Bucket
(Primary Index)

ADAM	* * *	JASON

| |
| |

---------------- --
| |
| Data Bucket 1 | Data Bucket n
V V
------------------------------- -------------------------------
ARRON	* * * *	ADAM		JOHNS	* * * *	JASON
WEST ST		ELM ST		EAST ST		MAIN ST
01347		21000		30306		45591
------------------------------- -------------------------------

<-------------------------DATA RECORDS-------------------------->

Figure 2-3 Storage of Keys in an Indexed File

When you do a key access, RMS moves from the root towards the leaf
level. RMS starts by scanning the root bucket for the first entry
whose key value is greater than or equal to the key value you want to
access. When RMS finds this entry, RMS continues the scan at the next
level. This process continues until the scan reaches the data level.
Thus, the cost of a key access is proportional to the number of levels
in an index rather than the number of records in the file.

PROPERTIES OF RMS RECORD FILES Page 2-7__________ __ ___ ______ _____

------------ <-----
| | |
| ROOT | |
| | |
------------ |

| |
| |
| |

-------------------------------- |-Index
| | | Buckets
| | |
| | |

----------------- ----------------- |
Intermediate		Intermediate	
Index		Index	
Bucket		Bucket	
----------------- ----------------- <-----

| |
| |
| |

----------------- -----------------

 ------------- ------------- ------------- ------------- <--
 | | | | | | | | |
 | LEAF | | LEAF | | LEAF | | LEAF | |-Data
 | | | | | | | | | Buckets
 ------------- ------------- ------------- ------------- <--

Figure 2-4 Buckets in Indexed Files

NOTE

The root of the tree is "up," and the
leaves of the tree are "down."

There are three types of buckets in indexed files:

1. Index buckets are the buckets that constitute all but the
leaves of an index.

2. Secondary-data buckets are the buckets that are leaves for
secondary key indexes. Entries in these buckets are called
SIDRs.

PROPERTIES OF RMS RECORD FILES Page 2-8__________ __ ___ ______ _____

3. Primary-data buckets are the buckets that contain your
records. Thus, they are the leaves of the primary key's
index.

2.3.4 Format Of A Record File Address (RFA) In An Indexed File______ __ _ ______ ____ _______ _____ __ __ _______ ____

The physical location of a record in an indexed file is specified
relative to the bucket that contains it. Specifically, a record's RFA
is the starting page of the record's bucket combined with its ID
within the bucket.

An indexed file RFA is graphically represented as p1/i1, where p1 is
the starting page of the record's bucket and i1 is the record's ID.
For example, the first record put in a file is often assigned the RFA
2/1 (because page 0 is the prologue and page 1 is the root bucket of
the primary index).

2.4 INDEXED FILE EFFICIENCY_______ ____ __________

2.4.1 Key Access Efficiency___ ______ __________

The efficiency of a key access in an indexed file is a function of how
many levels there are in the index. Thus, there is a large change in
random access time when the number of levels changes. For a given
number of records, the number of levels is a function of how full the
buckets are and the number of entries that fit per bucket.
Specifically, the number of records that fit in an index of n levels
is described in the following section.

2.4.1.1 Determining Number Of Levels - You can determine the number___________ ______ __ ______
of records that fit in an index of L levels by using the following
formula:

DF/R * ((IF/K) **L)

where:

D = Words per data bucket - 3 words of overhead

F = Average fullness of bucket (for example, 1/2)

PROPERTIES OF RMS RECORD FILES Page 2-9__________ __ ___ ______ _____

If you do a lot of random writes, you can expect an
average on the order of half-full. If you mostly
retrieve from a file loaded from a sorted sequential
file, you can expect an average that is close to full.
Characteristics between these extremes lead to fullness
factors between half-full and full.

I = Words per index bucket - 3 words of overhead

K = Words per key + 1 word of overhead

L = Number of levels

R = Average number of words per record + O (overhead)

O = 2 (If the record format is fixed-length records)

O = 3 (If the record format is variable-length records)

NOTE

For a secondary key, R is approximately 2 + K +
average number of write operations per record.

For example:

D = 509 (512 words/data bucket -3)

F = 0.8 (Average fullness of bucket)

I = 509 (512 words/index bucket -3)

K = 3 (for example, 10 character ASCII key plus overhead)

L = 2 (number of levels)

R = 50 (Average number of words/record plus overhead)

DF/R= 8 (Records/data bucket)

IF/K= 135 (Keys/index bucket)

MAX = 153000 (Maximum records that fit on 2 levels)

Thus, with 2 index levels, you can store 153000 records. If each
bucket were half full (F = 0.5), the maximum number of records that
will fit on 2 levels is 26244. If each bucket were full (F = 1), the
maximum number of records that fit on 2 levels is 285610, over ten
times greater than half full.

PROPERTIES OF RMS RECORD FILES Page 2-10__________ __ ___ ______ _____

2.4.1.2 Shaping Your Index - Shaping your index effectively involves_______ ____ _____
having certain data and making certain trade-offs. You need the
following pieces of data:

1. The number of records that will eventually be in the file.

2. The number of records you plan to initially load.

3. The values of D, F, I, K, and R.

4. The frequency with which you do writes and deletes.

Aside from shrinking your records and keys, your primary tool for
minimizing levels in an index is increasing F. You can improve F over
time in two ways:

1. Sort the records in the initial load of the file, and

2. Periodically reload or UNCLUTTER a heavily updated file.

Bucket splitting occurs when you add more records than the bucket can
hold. You can control bucket splitting in two ways:

1. During initial load of the file. Set data-fill and
index-fill divided by bucket size equal to initial record
count divided by eventual record count. Data-fill and
index-fill are defined with the /DAFILL: and /IAFILL:
switches in the RMSUTL DEFINE command. (Refer to Section
3.6.4 for a description of these two switches.)

2. Periodically UNCLUTTER or reload the file. The RMSUTL
UNCLUTTER command is described in Section 3.6.13.

If your file is on a TOPS-10 and you pre-allocate the file, you can
also make D or I greater than one page.

2.4.2 Write Access Efficiency_____ ______ __________

Write efficiency depends on three factors of decreasing importance.

1. The number of secondary keys. An additional secondary key
linearly increases the cost of each write operation.

2. The number levels in an index. This has the same effect as
for key accesses.

3. Likelihood of bucket splitting. A bucket split adds 2 bucket
writes to a write operation.

CHAPTER 3

RMS FILE MANAGEMENT UTILITY___ ____ __________ _______

The RMS file management utility, RMSUTL, is an interactive utility for
creating and manipulating RMS index files.

3.1 RULES OF OPERATION_____ __ _________

To use RMSUTL, type RMSUTL (for TOPS-20) or R RMSUTL (for TOPS-10).
RMSUTL responds with RMSUTL>, and you may now enter any of the
commands described in section 3.6.

3.1.1 Command Format_______ ______

Command formats consist of keywords, switches, names you have DEFINEd,
file specifications, numbers, quoted strings, and guide words.
Keywords and switches are names predefined by RMSUTL. Names you
define may consist of letters, digits, hyphen, dollar-sign, period,
and percent-sign, and may be as long as desired. However to avoid
keyword conflicts, you should not create a name that is a prefix of
BUCKET, DATAFIELD, FOUND-KEY-VALUE, HIGHEST, or PROLOGUE-DATA.

Command names and all other keywords need not be spelled out
completely; any unique beginning is acceptable. For example, the
DEFINE command can be DEF or DEFI. Commands are terminated by a
carriage return - linefeed sequence.

See the TOPS-10 and TOPS-20 User Manuals for a description of file
specification format. A quoted string is an arbitrary string of
characters enclosed in double quotes. A guide word is a descriptive
phrase enclosed in parentheses. You need never type in guide words.
They are in RMSUTL to be typed out when you use recognition. You can
type commands in either uppercase or lowercase. However, quoted
strings are processed exactly as typed. Thus "ABC" is a different key
value from "abc" (unless the current file is a SIXBIT file).

Type a ? to cause RMSUTL to display the list of available commands.

RMS FILE MANAGEMENT UTILITY Page 3-2___ ____ __________ _______

Question mark can also be used at any later point during command
typein in order to see the alternatives available.

RMSUTL supports the usual input editing characters. Use ^U to delete
the current command line. Use DELETE to backspace the cursor one
position. Use ^R to redisplay the current command line. Use ^H to
reestablish an aborted command line up to where the illegal typein
occurred.

RMSUTL supports command recognition (use of ESCAPE), although not for
file specifications. When you type ESCAPE, RMSUTL displays as much of
the remainder of the command as it can. In particular, if you type
the beginning characters of a keyword followed by ESCAPE, RMSUTL
responds by typing the remainder of the keyword and any guide words
following it. However, if you have not uniquely identified a keyword
(for example, DE could be DELETE or DEFINE), RMSUTL sounds the bell.

3.1.2 Command Status_______ ______

When necessary, RMSUTL displays errors, warnings, and informational
messages.

An error message starts with ?, and there are the following cases.

1. ? message -- the command processor detected an input error,
and command execution was not started.

2. ?UTLxxx -- RMSUTL detected an error during command execution.
Usually this means that the whole command is cancelled. The
exception occurs when the command performs more than one
independent operation (for example, FIX RFA1, RFA2). In this
case, only the operation affected by the error is cancelled;
any preceding and succeeding operations are performed.

3. ? message / exit to EXEC -- an internal RMS error occurred.
You should always report such errors to DIGITAL. You must
rerun RMSUTL to perform more commands.

A warning message starts with % and indicates that something minor is
in error, but RMSUTL is continuing execution of the operation. For
example, you tried to name more than 16 datafields in a DISPLAY
data-list command.

An informational message is enclosed in square brackets and is a
comment about the command.

RMS FILE MANAGEMENT UTILITY Page 3-3___ ____ __________ _______

3.2 CREATING A FILE________ _ ____

The DEFINE FILE command enables you to create a file at a terminal
rather than in a program. Unless you wish to create an indexed file,
you simply give a single DEFINE FILE command, specifying the desired
file attributes. If you wish to create an indexed file, you first
DEFINE the areas and keys you wish to associate with the file. Then
you give the DEFINE FILE command as before.

The following example creates an indexed file with a primary key and a
secondary key, declares a large bucket size for the records of the
file, and uses defaults for all other file attributes.

RMSUTL>DEFINE (OBJECT) AREA (NAMING IT) BIG (WITH BUCKET SIZE) 2 <RET>
RMSUTL>DEFINE (OBJECT) DATA (NAMING IT) EMPLOYEE-NAME (WITH TYPE) SIXBIT

(WITH LENGTH) 30 (STARTING AT BYTE) 0 /DANAME:BIG <RET>
RMSUTL>DEFINE (OBJECT) DATA (NAMING IT) JOB-CLASS (WITH TYPE)

SIXBIT (WITH LENGTH) 12 <RET>
RMSUTL>DEFINE (OBJECT) DATA (NAMING IT) SALARY (WITH TYPE) INTEGER <RET>
RMSUTL>DEFINE (OBJECT) KEY (NAMING IT) JCS (WITH SEGMENTS)

JOB-CLASS,SALARY /CHANGES-ALLOWED /DUPLICATES-ALLOWED <RET>
RMSUTL>DEFINE (OBJECT) FILE (NAMING IT) EMPLOYEES.RMS

(WITH ORGANIZATION) INDEXED (WITH KEYS) EMPLOYEE-NAME,JCS <RET>

3.3 FILE MANIPULATION____ ____________

RMSUTL operates on one RMS file at a time. You establish this file
with the OPEN RMS-FILE command. Similarly all output from the DISPLAY
and scanning commands is written to a report file. The report file is
an ASCII text file, and it is identified by the OPEN REPORT-FILE
command. However, its use is optional. If no report file is open,
data is output to your terminal.

When you are finished using a file, a CLOSE RMS-FILE command or CLOSE
REPORT command must be done.

3.4 MANIPULATING DATA IN A FILE____________ ____ __ _ ____

RMSUTL enables you to symbolically manipulate control data and user
data. It provides keywords for control field names and includes the
DEFINE DATAFIELD command so you can name and describe your fields.
The things you can do are DISPLAY fields, CHANGE fields, and DELETE
entries.

You can access and change arbitrary fields in a prologue with DISPLAY
PROLOG and CHANGE PROLOG. You can access, change, and expunge bucket
entries with DISPLAY BUCKET, CHANGE BUCKET, and DELETE BUCKET. To use
CHANGE BUCKET, CHANGE PROLOG, or DELETE BUCKET, you must open a file
for PATCHING. The BUCKET and PROLOGUE options of the data
manipulation commands constitute a physical view of the file. This
view is normally needed only by system personnel. Its principle
purpose is to facilitate diagnosing and patching corrupted files.

RMS FILE MANAGEMENT UTILITY Page 3-4___ ____ __________ _______

You can access, update, and delete records with DISPLAY data-list,
CHANGE data-list, and DELETE RECORD. A data-list is one or more names
created with the DEFINE DATAFIELD command. The record-level options
of the data manipulation commands constitute a conceptual view of the
file. They provide you at command-level with the same sort of
capabilities you have in a program. Additionally, they allow you to
scan a group of records and select all or some of them for processing.
This control is provided by the records-to-use clause, which is
described in section 3.7.

Another aspect of data manipulation is selecting what is to be
processed. RMSUTL allows you to set:

o Current key tells RMSUTL which index to use when
sequentially traversing the file.

o Current bucket tells RMSUTL which bucket to process when a
CHANGE BUCKET, DISPLAY BUCKET, or DELETE BUCKET is done.

o Current record tells RMSUTL the base record that applies
when relative record processing is done.

Currency indicators can be directly modified only by the SET command,
which is described in section 3.6.11.

3.5 FILE SCANNING____ ________

Every file-scanning command directly accesses consecutive data
buckets. These commands are designed so that it is easy to process an
entire index or entire file in one command.

The file-scanning commands are SPACE, UNCLUTTER, and VERIFY. The
VERIFY command is used to detect file corruption and out-of-sync-file
control data. In update mode, it can be used to fix out-of-sync-file
control data. The UNCLUTTER command is an updating VERIFY command
that also removes deleted POINTER entries and deleted records from a
file. The SPACE command simply reports on space usage in a file: how
full buckets are and how much clutter there is in them. Output from
each of these commands goes to the report file.

The OPEN RMS-FILE command for OUTPUT or PATCHING causes the file to be
opened for exclusive update. Thus, an UNCLUTTER command or updating
VERIFY command cannot be done while you are up for production.
However, the impact of these restrictions has been minimized. First
of all, you can do a read-only VERIFY. If any out-of-sync data is
detected, you can then reopen the RMS file at a more convenient time
and quickly correct the affected entries with the FIX command.

RMS FILE MANAGEMENT UTILITY Page 3-5___ ____ __________ _______

Additionally, a read-only VERIFY can be done from multiple jobs at the
same time. This can be done because it is easy to specify mutually
exclusive portions of the file within each job. Similarly, one can
UNCLUTTER a file over a period of several runs.

3.6 COMMAND DESCRIPTIONS_______ ____________

The following conventions are used in the command descriptions that
follow. Switches are shown alphabetically, but zero or more may be
specified in any order. The symbol (|) represents a choice in
arguments, parameters, or switches that can be used in a command. For
example,

/DISPLAY:| OCTAL |
| DECIMAL |

means you can specify /DISPLAY:OCTAL or /DISPLAY:DECIMAL. If there
are multiple options in a command that start with the same phrase, the
guide words for the phrase are shown only with the first command
option. Also guide words are shown for clarity only; it is never
necessary to type in guide words.

The RMSUTL commands are:

o CHANGE changes the specified fields to the specified
values

o CLOSE closes the currently opened RMS or REPORT file

o DEFINE
AREA creates and names an area description
DATA defines data fields in a record
FILE creates an RMS file with specified attributes
KEY creates and names a key description

o DELETE deletes the specified entry or record

o DISPLAY outputs the specified fields to the report
file

o EXIT returns to operating system command level (you
can CONTINUE)

o HELP outputs a brief description of RMSUTL

o INFORMATION displays the specified portion of the current
environment

o OPEN opens the specified RMS or REPORT file

o REDEFINE gives new attributes to a DEFINEd name

RMS FILE MANAGEMENT UTILITY Page 3-6___ ____ __________ _______

o SET changes the currency indicators

o SPACE outputs space usage statistics for the
specified part of a file

o TAKE executes the RMSUTL commands in the specified
file

o UNCLUTTER eliminates deleted POINTER entries and deleted
records from a file

o VERIFY determines if a file is internally consistent

RMS FILE MANAGEMENT UTILITY Page 3-7___ ____ __________ _______

3.6.1 CHANGE Command______ _______

Function________

This command enables you to alter entries in your file. The file
is checkpointed after an entry is changed.

Caution should be applied when using the CHANGE BUCKET and CHANGE
PROLOGUE commands. Their purpose is to provide you with a
symbolic, and therefore safer, way of correcting damaged control
data. Conversely, they give you the power to damage a perfectly
valid file.

Formats_______

The "to-list" argument in the formats below is of the form:

field-name (TO) value, field-name (TO) value, ... , etc.

| FILE |
CHANGE (VALUE OF) PROLOGUE-DATA (FOR) | AREA n1 | (SETTING) to-list

| KEY n2 |

Fields in the specified descriptor are altered. The RMS
file must be open for patching.

N1 is an area number. N2 is a key of reference. If FILE is
specified, the allowed fields are:

1. AREA-COUNT

2. AREA-OFFSET

3. BUCKET-SIZE

4. BYTE-SIZE

5. FORMAT

6. KEY-COUNT

7. KEY-OFFSET

8. MAXIMUM-RECORD-SIZE

RMS FILE MANAGEMENT UTILITY Page 3-8___ ____ __________ _______

9. ORGANIZATION

10. PAGES-IN-FILE

If KEY n2 is specified, the allowed fields are LEVELS,
NEXT-KEY, ROOT-PAGE, and all the field-names of a KEY XAB.

The internal tables of RMS do not reflect the effects of a
CHANGE PROLOG command until after the file is closed and
reopened. Therefore RMSUTL does not allow you to perform
any bucket or record operations until you reopen the file.

| ENTRY n1 |
CHANGE (VALUE OF) BUCKET (AT) | HEADER | (SETTING) to-list

| ID n2 |

RMSUTL changes the specified entry within the current
bucket. The RMS file must be open for patching. An entry
can be identified by entry number or ID number. The
field-names allowed in to-list are bucket and entry type
dependent, see section 4.3.

If a RECORD entry of a primary-data bucket is specified, the
to-list can also contain datafield names. This usage
differs from CHANGE datafield-list in that there are no side
effects or checks when a key value is changed.

RMSUTL changes the indicated fields in the header of the
current bucket. The field-names allowed in to-list are:

1. AREA-NUMBER

2. ATTRIBUTES

3. LAST-ID

4. LEVEL

5. NEXT-BUCKET

6. NEXT-ID

7. TYPE

8. WORDS-IN-USE

CHANGE (VALUE OF) to-list records-to-use

The indicated datafields in the identified records are
changed. At most 16 datafields can be specified. If the
records-to-use clause is omitted, the current record is
used. The file must be open for output or patching.

RMS FILE MANAGEMENT UTILITY Page 3-9___ ____ __________ _______

RMSUTL performs an RMS update operation (COBOL REWRITE verb,
BASIC+2 UPDATE statement). Therefore, you have no more
power than if you did the operation in a program. For
example, if you tried to change the value of the primary
key, RMS would not perform the update. See Section 3.7 for
a description of the "records-to-use" clauses.

RMS FILE MANAGEMENT UTILITY Page 3-10___ ____ __________ _______

3.6.2 CLOSE Command_____ _______

Function________

This command closes the specified type of file, thereby
permitting you to open another file of that type.

Format______

CLOSE (FILE TYPE) | REPORT |
| RMS-FILE |

This command closes either the currently opened report file
or the currently opened RMS file.

RMS FILE MANAGEMENT UTILITY Page 3-11___ ____ __________ _______

3.6.3 DEFINE DATAFIELD Command______ _________ _______

Function________

The DEFINE DATAFIELD command is used to associate a name and data
type with a consecutive group of bytes in a record. RMSUTL then
can display or modify such a data segment when given its name.
Additionally, you can place all your field definitions in a file
and thereafter TAKE them whenever you run RMSUTL.

The DEFINE DATAFIELD command can be used to define a single
segment key. You accomplish this by suffixing /KEY or any of the
switches described for DEFINE KEY (see Section 3.6.4).

Formats_______

DEFINE (OBJECT) DATAFIELD (NAMING IT) user-name (WITH TYPE)

| ASCII |
| FILE-BYTES | (WITH LENGTH) n1 (STARTING AT BYTE) n2
| SIXBIT |

This usage defines a string datafield with the specified
internal representation. FILE-BYTES indicates that the
representation is taken from the file byte size. N1
indicates the number of bytes in the datafield. N2
indicates the number of bytes preceding the starting byte of
the datafield. If n2 is omitted, RMSUTL places the
datafield immediately past the last defined datafield.
However default positioning is allowed only when the last
defined string has the same internal representation. The
initial positioning defaults are ASCII at byte 0.

DEFINE (OBJECT) DATAFIELD (NAMING IT) user-name | FLOATING |
| INTEGER |

(STARTING AT WORD) n3

FLOATING defines a numeric datafield that is represented
internally as a single-precision floating-point number. N3
indicates the number of words preceding the datafield. If
n3 is omitted, RMSUTL places the datafield at the first word
boundary past the last defined datafield.

RMS FILE MANAGEMENT UTILITY Page 3-12___ ____ __________ _______

INTEGER defines a numeric datafield that is represented
internally as a single-precision binary integer. N3
indicates the number of words preceding the datafield. If
n3 is omitted, RMSUTL places the datafield at the first word
boundary past the last defined datafield.

Switch______

/DISPLAY: | OCTAL |
| DECIMAL |

The /DISPLAY: switch is applicable only when you DEFINE a
DATAFIELD to be INTEGER. If OCTAL is specified, the field
is DISPLAYed as an unsigned octal value. If DECIMAL is
specified, the field is DISPLAYed as a signed decimal value.
If /DISPLAY is not specified, DECIMAL is assumed.

RMS FILE MANAGEMENT UTILITY Page 3-13___ ____ __________ _______

3.6.4 Defining File Attributes And The DEFINE FILE Command________ ____ __________ ___ ___ ______ ____ _______

Function________

The DEFINE FILE command is used to create an RMS file and assign
it attributes. The DEFINE FILE command is the only way to make
an indexed file contain multiple areas, allow duplicates for the
primary key, or be loaded with partially full buckets (see
Appendix A).

For indexed files, you must define at least one key field. You
may also define one or more areas. An area must be DEFINEd
before it is used in a DEFINE KEY or DEFINE DATAFIELD command.
Similarly, keys must be DEFINEd before they are used in a DEFINE
FILE command.

Format I______ _

DEFINE (OBJECT) FILE (NAMING IT) filename (WITH ORGANIZATION)

INDEXED (WITH KEYS) key-name-list

Key-name-list is one or more key-names you have DEFINEd. It
identifies the file's primary key, first secondary key,
second secondary key, and so on. No segment of a key can
have a string data type that disagrees with the file's byte
size.

Switches________

/BUCKET-SIZE:n

RMSUTL sets bucket size for the default area to n pages. If
this switch is omitted, a bucket size of 1 page is assumed.

/BYTE-SIZE:n

RMSUTL sets the file's byte size to n bits. N can be 6, 7,
or 9. If this switch is not specified, a byte size of 7 is
assumed.

RMS FILE MANAGEMENT UTILITY Page 3-14___ ____ __________ _______

/RECORD-SIZE:n

N is a byte count. If record format is fixed, RMS uses n as
the record size for all records in the file. Thus, this
switch is required if record format is fixed. If record
format is variable, RMS interprets n as the maximum record
size. If this switch is not specified for a variable-record
file, no maximum is established.

/FORMAT: | FIXED |
| VARIABLE |

RMSUTL gives the file the indicated record format. VARIABLE
means that the file can contain records of different
lengths. FIXED indicates that each record must have the
size specified in the /RECORD-SIZE switch. If this switch
is not specified, VARIABLE is assumed.

Format II______ __

DEFINE (OBJECT) KEY (NAMING IT) key-name (WITH SEGMENTS) segment-name

This command creates a key description with the specified
name and attributes. Segment-name identifies the datafields
that comprise the key, up to eight can be specified. The
datafields specified must already have been DEFINEd. The
combined size of a key's segments may not exceed 255 bytes.
The data type of a string segment must conform to the file's
byte size. For example, a segment's data type can be SIXBIT
only if the file's byte size is 6.

Switches________

/CHANGES-ALLOWED

If specified, a program will be able to alter this key on an
update. This switch can not be applied to a primary key.

/DANAME:area-name

Data buckets for this key will be allocated from the
specified area, which must already have been DEFINEd. If
this switch is not specified, area 0 is used.

/DAFILL:n

RMS will put at most n words in a data bucket for this key.
This enables you to spread out records when initially
loading a file. If this switch is not specified, n is set
to 0 which means the entire bucket is used.

RMS FILE MANAGEMENT UTILITY Page 3-15___ ____ __________ _______

/DUPLICATES-ALLOWED

If specified, a program will be able to write a record that
contains a key value that already exists in the file.

/IANAME:area-name

Index buckets for this key will be allocated from the
specified area, which must already have been DEFINEd. If
this switch is not specified, area 0 is used.

/IAFILL:n

RMS will put at most n words in an index bucket for this
key. This enables you to spread out bucket entries when
initially loading a file. If this switch is not specified,
n is set to 0 which means the entire bucket is used.

Format III______ ___

DEFINE (OBJECT) AREA (NAMING IT) area-name (WITH BUCKET SIZE) n

This command creates an area description with the specified
name and bucket size. N is the number of pages to be used
for buckets of this area. An area-name can be referenced in
0 or more key descriptions.

RMS FILE MANAGEMENT UTILITY Page 3-16___ ____ __________ _______

3.6.5 DELETE Command______ _______

Function________

This command is used to reclaim space in a file or to logically
delete records.

Caution should be applied when using DELETE BUCKET. Its purpose
is to provide you with a symbolic, and therefore safer, way of
correcting damaged control data. Therefore, it gives you the
power to damage a perfectly valid file.

Formats_______

DELETE (OBJECT) BUCKET-ENTRY (IDENTIFIED BY) | ENTRY n1 |
| ID n2 |

The space occupied by the specified entry in the current
bucket is reclaimed. ID n2 may be specified only for a data
bucket. The RMS file must be open for patching.

RMSUTL tries to prevent accidental deletions. A SIDR entry
space may not be reclaimed if any non-NIL values are in its
RFA list. An index entry's space may not be reclaimed if
its DOWN-POINTER identifies a valid nonempty bucket. A
RECORD entrys space may not be reclaimed unless its DELETED
attribute is on.

RECORD entries are special in that they are pointed at by
other entries. If a RECORD entry points back to a POINTER
entry, the POINTER entry is reclaimed as well. However,
deletion of a RECORD entry does not affect any secondary
data entries associated with the record.

| KEY |
DELETE (OBJECT) RECORD (IDENTIFIED BY) | LAST-ENTRY |

| RELATIVE-REC-NO |

The records identified by KEY, LAST-ENTRY, or
RELATIVE-REC-NO clause are deleted. These clauses are
referred to as "records-to-use" clauses. If you do not
specify one of these records-to-use clauses, only the
current record is deleted. A delete operation in a program
would have the exact same effect. See Section 3.7 for a
description of the "records-to-use" clauses.

RMS FILE MANAGEMENT UTILITY Page 3-17___ ____ __________ _______

3.6.6 DISPLAY Command_______ _______

Function________

This command outputs values to the report file, which you
identify with an OPEN REPORT command. However, if a report file
is not open, the report is output to the user terminal. The data
in the report is discussed in Section 3.8.1.

Formats_______

| AREA n1 |
DISPLAY (VALUE OF) PROLOGUE-DATA (FOR) | FILE field-list |

| KEY n2 field-list |

If the (FOR) clause is omitted, the entire prologue is
displayed. If a field-list is omitted, the entire file,
area, or key descriptor is displayed. N1 is an area number.
N2 is a key of reference.

If FILE is specified, the allowed fields are:

1. AREA-COUNT

2. AREA-OFFSET

3. BUCKET-SIZE

4. BYTE-SIZE

5. KEY-COUNT

6. KEY-OFFSET

7. MAXIMUM-RECORD-SIZE

8. ORGANIZATION

9. PAGES-IN-FILE

10. RECORD-FORMAT

If KEY n2 is specified, the allowed fields are LEVELS,
NEXT-KEY, ROOT-PAGE, and all the field-names of a KEY XAB
(extended argument blocks).

RMS FILE MANAGEMENT UTILITY Page 3-18___ ____ __________ _______

| ENTRY n-list |
| HEADER |

DISPLAY (VALUE OF) BUCKET (AT) | ID n-list |
| KEY-VALUE "string" |
| LARGEST-ENTRY |

The specified clause of the current bucket is displayed. A
bucket consists of a header and 0 or more entries. If none
of the above clauses are specified in the DISPLAY command,
the entire bucket is displayed. The above clauses are
defined as follows:

ENTRY n-list the specified entries are displayed.

HEADER the bucket's header is displayed.

ID n-list the entries with the specified IDs are
displayed. The current bucket must be a data
bucket.

KEY-VALUE "string"

the first entry with a key greater than or
equal to "string" is displayed.

LARGEST-ENTRY the largest entry in the bucket is displayed.

N-list is a list of ranges separated by commas. A range is
n1 (TO) n2. If n2 is omitted, n1 (TO) n1 is assumed. For
example, DISPLAY BUCKET ENTRY 1 (TO) 3, 7 displays entry 1,
entry 2, entry 3, and entry 7. A range may be sparse. For
example, if no record in the current bucket has ID 4,
DISPLAY BUCKET ID 3 (TO) 5 displays the other two entries
regardless.

| KEY |
DISPLAY (VALUE OF) DATA (FOR RECORDS IDENTIFIED BY) | LAST-ENTRY |

| RELATIVE-REC-NO |

The portion of the identified records indicated by the KEY,
LAST-ENTRY, or RELATIVE-REC-NO clause is displayed. These
clauses are referred to as "records-to-use" clauses. The
entire record is treated as a field whose type is
FILE-BYTES. A datafield-list is one or more datafield names
separated by commas. If a datafield-list is specified, each
field is displayed in accordance with its DEFINE command. A
maximum of 16 datafields can be specified. If the above
clauses are omitted, the current record is used. See
section 3.7 for a description of the "records-to-use"
clause.

RMS FILE MANAGEMENT UTILITY Page 3-19___ ____ __________ _______

3.6.7 FIX Command___ _______

Function________

This command completes an aborted delete, put, or update for the
specified entries. If the entry needs fixing, the same message
as would occur during a VERIFY is output to the report file. No
message is generated when you give a FIX command for an already
valid entry.

FIX is used in conjunction with VERIFY. When VERIFY is run in
NOFIX mode, it denotes inconsistencies that can be fixed later by
suffixing [Fixable] to the message describing the inconsistency.
See section 3.8.2 for a description of these messages and the
exact FIX statement that applies to each of them.

Format______

FIX (RECORD WITH RFA) fix-list

An entry in a fix-list is of the form "rfa1 (OF INDEX) n".
If n is omitted, 0 is assumed. If an entry in a fix-list is
invalid in some way, processing of subsequent entries in the
list is not affected.

RMS FILE MANAGEMENT UTILITY Page 3-20___ ____ __________ _______

3.6.8 INFORMATION Command___________ _______

Function________

The INFORMATION command displays on your terminal the specified
information, dependinng on the clause you use, the current status
of RMSUTL, and the file you are maintaining.

Format______

| ALL |
| AREAS |

INFORMATION (ABOUT) | CONTEXT |
| DATAFIELDS |
| KEYS |

Specifying AREA, DATAFIELDS, or KEYS causes RMSUTL to
display the attributes of the indicated DEFINEd names.

CONTEXT displays information about the currency indicators.
It displays the current key of reference, the current
record's RFA, and the current bucket's page number. It also
tells you about the report file and RMS file.

ALL combines the output of the other options.

RMS FILE MANAGEMENT UTILITY Page 3-21___ ____ __________ _______

3.6.9 OPEN Command____ _______

Function________

The OPEN command identifies and makes a file available to RMSUTL.
There are two types of files, RMS files and report files. All
data manipulation is with respect to the currently open RMS file.
The output of DISPLAY and the file-scanning commands is directed
to the currently open report file, if there is one. If no report
file is open, reports are directed to TTY:. Until a file is
CLOSEd, a new file of the same type cannot be identified.

Format I______ _

| INPUT |
OPEN (FILE TYPE) RMS-FILE (WITH NAME) filespec (FOR) | OUTPUT |

| PATCHING |

Opens the specified RMS file for the indicated type of
access. The default access mode is INPUT. CHANGE, DELETE,
and UNCLUTTER may not be done if the file is open for input.
CHANGE PROLOGUE, CHANGE BUCKET, and DELETE BUCKET may not be
done unless the file is open for PATCHING.

If OUTPUT or PATCHING is specified, no one else can have the
file open to write. If there is an access conflict with
another user, the OPEN fails. If INPUT is specified, an
access failure cannot occur. However there is a small
chance that a later command may be affected by the output of
another job.

OPEN RMS-FILE is a two operation command: OPEN followed by
SET INDEX 0. If the second operation fails, the file
"remains" open, with current bucket set to 1 and no current
record set.

Switch______

/MAXIMUM-RECORD-SIZE:n

If a file was created without a maximum record size, RMSUTL
has no direction as to an appropriate size for its data
record buffer. This switch tells RMSUTL to allocate a
buffer of n file-bytes. If the switch is also omitted,
RMSUTL allocates a buffer of 512 words.

RMS FILE MANAGEMENT UTILITY Page 3-22___ ____ __________ _______

Format II______ __

OPEN (FILE TYPE) REPORT /APPEND

The OPEN REPORT command opens the specified file for output,
creating it if necessary. If the file already exists, it is
superseded unless the /APPEND switch is specified. The
report file is a stream ASCII file and is checkpointed at
the end of each RMSUTL command.

Switch______

/APPEND

If a report file already exists, the /APPEND switch permits
you to add stream ASCII data to the existing file. The
existing report file will not be superseded.

RMS FILE MANAGEMENT UTILITY Page 3-23___ ____ __________ _______

3.6.10 REDEFINE Command________ _______

Function________

This command gives new attributes to an already DEFINEd name.

Formats_______

| datafield |
REDEFINE (NAME) | area | remainder of DEFINE

| key |

See section 3.6.3 for a description of DEFINE DATAFIELD.
See section 3.6.4 for descriptions of DEFINE AREA and DEFINE
KEY.

RMS FILE MANAGEMENT UTILITY Page 3-24___ ____ __________ _______

3.6.11 SET Command___ _______

Function________

This command enables you to modify the currency indicators. The
general rules governing currency indicators are as follows:

1. When you open an RMS file, RMSUTL simulates a SET INDEX 0.

2. If a SET command results in a ? message, the currency
indicators are left unchanged.

3. The SET INDEX command sets all three currency indicators.

4. The SET BUCKET command sets only the current bucket.

5. The SET RECORD command sets just the current record unless
you specify SET RECORD KEY new-key-of reference. In this
case, it sets all three currency indicators.

Formats_______

SET (CURRENT) BUCKET (TO ONE IDENTIFIED BY) bucket-to-use

This command sets the current bucket to the one specified in
the bucket-to-use clause. The bucket-to-use clause may be
one of the following:

o DATA-LEVEL locate the leftmost data bucket under the
current bucket. Leftmost means the data
bucket with the lowest keys.

o DOWN n move to the bucket pointed to by the nth entry
from the top of the current bucket. If n is
omitted, move to the bucket pointed to by the
first entry. The current bucket must be an
index bucket.

o LAST-RECORD

move to the bucket associated with the last
record selected in a record-processing
command. The record-processing commands are
CHANGE data-list, DELETE RECORD, DISPLAY
data-list, and SET RECORD. If the primary key
is current, the primary data bucket containing

RMS FILE MANAGEMENT UTILITY Page 3-25___ ____ __________ _______

the record is selected. If a secondary key is
current, the secondary data bucket containing
the SIDR that points at the record is
selected.

o NEXT move to the bucket at the same level of the
tree with the next higher group of key values.
However, if the current bucket is rightmost,
move to the leftmost bucket.

o ROOT position to the root bucket of the current
index structure.

o UP move to the bucket whose entry points at the
current bucket.

SET (CURRENT) INDEX (USING KEY OF REFERENCE) n1 (AND) where-in-index

This command sets the current key of reference to n1. It
sets current bucket and current record using the
where-in-index clause. The possibilities are:

BUCKET (AT PAGE) n2

RFA (BKT/ID) n3/n4

ROOT

If the where-in-index clause is omitted, ROOT is assumed.

ROOT causes the current bucket to be set to the root bucket
of index n1. It causes the current record to be set to the
record containing the lowest key value for key n1.

BUCKET n2 sets the current bucket to n2. If this bucket is
not part of index n1, RMSUTL may not be able to tell for
sure. If [Page not start of ...] is displayed, the bucket
is still made current because the problem may be that the
bucket's header is clobbered rather than that you specified
a bad page number. RMSUTL tries to set the current record
to the record identified by the first entry in the selected
bucket. However, RMSUTL cannot always do this. The full
set of rules are:

1. If the bucket's header is clobbered, do not set a
current record.

2. If the bucket at page n2 is not a data bucket,
internally perform a SET BUCKET DATA-LEVEL.

3. If the bucket at the data-level is empty, do not set a
current record.

RMS FILE MANAGEMENT UTILITY Page 3-26___ ____ __________ _______

4. For key 0, try to set current record to the first entry
in this bucket.

5. For a secondary key, try to set current record to the
first RFA in the first entry's RFA list. If the list is
empty, do not set a current record.

6. Do a key access using the key value in the tentative
current record. If the key access fails, do not set a
current record.

7. Scan up to 100 duplicates until the tentative current
record is found. If it is found, it has been made
current. If it cannot be found (probably because it is
a deleted entry or it is more than the 100th duplicate),
"approximate" and set current record to the record
located by the key access.

RFA n3/n4 tries to set the current record to the record
located by ID n4 in the primary data bucket at page n3. The
record or its POINTER entry may be at n3/n4. The operation
may fail or become approximate in the same ways as BUCKET
n2. For key 0 current bucket is set to the bucket
containing the current record. For a secondary key, it is
set to the bucket containing the current record's SIDR.

SET (CURRENT) RECORD (TO FIRST ONE IDENTIFIED BY) records-to-use

This command sets the current record to the first one
selected by the records-to-use clause, which is described in
section 3.7. If a new key of reference is specified in the
records-to-use clause, it becomes current, and the current
bucket is set to the data bucket containing the data record
(or SIDR) selected.

RMS FILE MANAGEMENT UTILITY Page 3-27___ ____ __________ _______

3.6.12 SPACE Command_____ _______

Function________

This command accumulates space usage statistics for the data
buckets in the specified key range. SPACE outputs status
information and the results of its scan to the report file. This
output is described in section 3.8.2. The fullness and clutter
statistics it generates are a good indication of when to
UNCLUTTER or reload a file.

Format______

| ALL-KEYS |
SPACE (USAGE OF FILE FROM) | KEY (#) n1 range |

| SECONDARY-KEYS |

If ALL-KEYS is specified, all indexes of the file are
scanned. If SECONDARY-KEYS is specified, the index of each
secondary key is scanned. If KEY n1 is specified, the
specified part of that key's data buckets is scanned. If a
range is not specified, the entire index is scanned. If
none of the above options are specified, ALL-KEYS is
assumed.

Range is of the form (FROM) low-bound (TO) high-bound.
Low-bound may be LOWEST or a quoted string. High-bound may
be HIGHEST or a quoted string. The interpretation of a
scanning range is consistent with the records-to-use clause,
described in section 3.7.

RMS FILE MANAGEMENT UTILITY Page 3-28___ ____ __________ _______

3.6.13 UNCLUTTER Command_________ _______

Function________

This command eliminates POINTER entries and expunges DELETEd
records within the specified range of keys. In the process of
doing this, it does an updating VERIFY KEY 0 for the specified
range. UNCLUTTER outputs status information and the results of
its scan to the report file. This output is described in section
3.8.2.

Periodic use of this command reduces degradation of keyed
accesses over time. There are two reasons for this. UNCLUTTER,
by reclaiming space, reduces the likelihood of bucket splitting.
Secondly, removing POINTER entries saves the file access needed
to process the level of indirection POINTER entries imply.

Format______

UNCLUTTER (INDEX FILE FROM) range

Range is of the form low-bound (TO) high-bound. Low-bound
may be LOWEST or a quoted string. High-bound may be HIGHEST
or a quoted string. If the range is omitted, LOWEST (TO)
HIGHEST is assumed. The interpretation of a scanning range
is consistent with the records-to-use clause, described in
section 3.7.

Switch______

/PROGRESS:n2

If the /PROGRESS switch is specified, RMSUTL outputs the
UNCLUTTER's progress every n2 keys it scans. Progress is
shown by displaying the highest key value scanned so far.
If /PROGRESS is omitted, 10000 is assumed. RMSUTL also
checkpoints the RMS file and the report file when it makes a
progress report.

RMS FILE MANAGEMENT UTILITY Page 3-29___ ____ __________ _______

3.6.14 VERIFY Command______ _______

Function________

This command verifies that records in the specified key range can
be accessed sequentially and by key. VERIFY outputs status
information and the results of its scan to the report file. This
output is described in section 3.8.2. If the RMS file is open
for output or patching, VERIFY will complete aborted deletes,
puts, and updates, unless you specify otherwise.

As VERIFY scans an index structure, it does the following:

1. It verifies that the keys of each bucket are sorted
in ascending sequence. And for secondary keys, it
checks that each RFA in a SIDR points to a data
record with the same key value as the SIDR.

2. It verifies that duplicates occur only when proper.

3. It verifies that each entry scanned can be accessed
by key (by doing a key access for the highest key
in each data bucket).

4. It checks the bucket header of each bucket it
accesses.

Format______

| ALL-KEYS |
VERIFY (INDEX FILE UPON) | KEY (#) n1 range |

| SECONDARY-KEYS |

If ALL-KEYS is specified, all indexes of the file are
scanned. If SECONDARY-KEYS is specified, the index of each
secondary key is scanned. If KEY n1 is specified, the
specified part of that key's index is scanned. If a range
is not specified, the entire index is scanned. If none of
the above options are specified, ALL-KEYS is assumed.

Range is of the form (FROM) low-bound (TO) high-bound.
Low-bound may be LOWEST or a quoted string. High-bound may
be HIGHEST or a quoted string. The interpretation of a
scanning range is consistent with the records-to-use clause,
described in Section 3.7.

RMS FILE MANAGEMENT UTILITY Page 3-30___ ____ __________ _______

Switches________

/NOACCESS

When a primary index is scanned, VERIFY accesses data
records by each of their secondary keys unless this switch
is specified. If the primary index is not being scanned,
this switch is ignored. Accessing by secondary key is
important but expensive. It is the only way to guarantee
that a data record can be accessed by each of its secondary
keys. However, a scan of the secondary indexes will
discover most key inconsistencies caused by aborted updates
(as opposed to aborted puts).

/NOFIX

When the RMS file is open for output or patching, VERIFY
completes aborted deletes, puts, and updates unless this
switch is specified.

/PROGRESS:n2

If the /PROGRESS switch is specified, RMSUTL outputs the
VERIFY's progress every n2 keys it scans. Progress is shown
by displaying the highest key value scanned so far. If
/PROGRESS is omitted, 10000 is assumed. RMSUTL also
checkpoints the RMS file and the report file when it makes a
progress report.

RMS FILE MANAGEMENT UTILITY Page 3-31___ ____ __________ _______

3.6.15 Secondary Commands_________ ________

Function________

These commands (as shown in the formats below) allow you to
perform other functions in the RMSUTL program.

Formats_______

EXIT (TO MONITOR)

Return to the operating system command level. Any open
files are closed. You can type CONTINUE, but you have to
(re)open the files you wish to process.

HELP (PLEASE)

Displays description of each RMSUTL command.

TAKE (COMMANDS FROM) file-spec /[NO]DISPLAY

Reads RMSUTL commands from the specified file. If the
/DISPLAY switch is specified, TAKE outputs the commands to
the terminal as they are processed. The default is
/NODISPLAY.

RMS FILE MANAGEMENT UTILITY Page 3-32___ ____ __________ _______

3.7 RECORDS-TO-USE CLAUSE______________ ______

The record-processing commands allow you to select all or part of a
group of records for processing in a single command. You can select a
range of records by key value or relative to the current record.
Additionally you can select the current record by omitting the
records-to-use clause, or you can select the last entry used in a
bucket-processing command.

The facility for selecting part of a range is the value-test phrase.
The value-test phrase is of the form datafield-name operator value3.
When this optional phrase is specified, it causes RMSUTL to apply the
indicated test to each record it locates. If the test is false, the
located record is bypassed. Datafield-name must have been declared in
the DEFINE DATAFIELD command. Value3 must conform to the data type of
the specified datafield. Operator can be =, #, >, >=, <, or <= .
These are respectively equal, not equal, greater than, greater than or
equal, less than, and less than or equal.

Formats_______

KEY (#) n (FROM) low-bound (TO) high-bound (AND) value-test

RMSUTL locates each record that has a key value that is >=
the value derived from low-bound and <= the value derived
from high-bound. If high-bound is omitted, RMSUTL supplies
a default. N identifies which key to use. Specifying 0
identifies the primary key. Omitting n causes RMSUTL to use
the current key of reference.

Low-bound may be LOWEST or a quoted string. The value
RMSUTL derives from LOWEST is a string of NULs. If
low-bound is LOWEST and high-bound is omitted, high-bound is
set to FOUND-KEY-VALUE. If low-bound is a quoted string and
high-bound is omitted, high-bound is set to the same value
specified in low-bound. Thus, if no records have a key
value equal to the quoted string, no records are located.
Conversely, if there are multiple records whose key is this
value, each is located.

High-bound may be HIGHEST, FOUND-KEY-VALUE, or a quoted
string. The value RMSUTL derives from HIGHEST is a string
whose bits are all 1s. The value RMSUTL derives from
FOUND-KEY-VALUE is the first key value in the file >=
low-bound. If low-bound and high-bound are both quoted
strings, high-bound must not be less than low-bound.

When the length of a quoted string is less than the defined
length of the specified KEY, RMSUTL pads it to the defined
length. For low-bounds, it pads with NULs. For
high-bounds, it pads with 1 bits. Thus, if you specify
DISPLAY DATA KEY 1 "A", RMSUTL locates each record whose

RMS FILE MANAGEMENT UTILITY Page 3-33___ ____ __________ _______

first secondary key starts with "A". This is because RMSUTL
interprets the KEY range as "A000..." (TO) "A111...", where
000... and 111... indicate padding to defined length with
bytes that are all 0s and 1s respectively.

A range containing padded lengths is sometimes "too
powerful." Consider a key that is a blank-padded person's
name. It is not enough to specify DISPLAY DATA KEY "BROWN"
to exclusively locate records whose key is "BROWN ".
You must specify "BROWN " to prevent "BROWNxxxxx" from also
being located.

LAST-ENTRY

If the primary key is current and a data bucket is current
and the last accessed entry is an existing record, the last
accessed entry is selected.

RELATIVE-REC-NO (FROM) n1 (TO) n2 (AND) value-test

RMSUTL locates the specified range of records from n1
through n2. Record 0 is the current record; record 1 is
the next record; and so on. "Next" is with respect to the
sequential ordering implied by the current key of reference.

If n2 is not specified, only the record identified by n1 is
located and a value-test may not be specified. If n2 is
specified, it must be greater than n1. If n2 is past the
last record in the current index, no error results.

3.8 THE REPORT FILE___ ______ ____

Output from DISPLAY, FIX, and the file-scanning commands is directed
to the report file. If no report file is open, this output is
directed to TTY: and is intermixed with command status messages.
Also the command as typed does not appear in the report, as is usually
the case.

3.8.1 DISPLAY OUTPUT_______ ______

The format in which an entry is displayed depends on the type of
bucket. The display of an index entry contains a key value and the
page number of a bucket. The display of a secondary-data entry
contains a key value and one or more RFAs. The display of a
primary-data entry contains the entry's control data and primary key,
unless the entry is a POINTER entry. DISPLAY BUCKET and DISPLAY
PROLOG usually suppress output of 0-valued fields.

RMS FILE MANAGEMENT UTILITY Page 3-34___ ____ __________ _______

Record displays are analogous to entry displays. In effect, control
field-names are replaced by user field-names. Additionally, the
record's RFA is included in the display. If the record has a POINTER
entry, the POINTER entry's RFA is displayed as well. The RFA
information is important when you are examining SIDRs.

3.8.2 File-Scanning Output_____________ ______

File-scanning output falls into two categories: scan status messages,
which are enclosed in square brackets; and scan results.

There are the following types of scan status messages:

1. Completion messages occur when the scan of an index has been
completed. For example, if you specify VERIFY ALL for a
three key file, three completion messages are output. A
normal completion message for VERIFY (or UNCLUTTER) contains
a count of the records scanned. For the primary key, this is
the number of existing user records. For secondary keys, it
is the number of SIDRs. An abnormal completion message
occurs if a loop is detected in the data buckets of an index.

2. Progress reports occur as a result of the /PROGRESS:n switch,
where n refers to existing user records or SIDRs, as
appropriate. When RMSUTL outputs a progress report, it also
checkpoints the report file and RMS file. Thus, you are
guaranteed that you can safely resume a scan with the key
value output in the last progress report.

3. [Fixing] and [Fixable] are appended to scan results to
indicate what RMSUTL took care of or can take care of for
you. The two messages are mutually exclusive; an updating
scan outputs the [Fixing], and a read-only scan outputs the
[Fixable].

4. [Aborting scan of current bucket] occurs after the third
uncorrectable inconsistency has been detected in a bucket.
It is simply a means of bounding output when "garbage" is
being scanned.

5. [Changing to /NOFIX ...] occurs after an UNCLUTTER or
updating VERIFY has detected an inconsistency RMSUTL cannot
correct. It is a precautionary measure to prevent RMSUTL
from further clobbering your file.

6. [Empty RFA list ...] occurs when RMSUTL detects an SIDR
whose RFA list contains all NILs. You need do nothing in
response to this message, but you may reclaim some space by
DELETing the specified entry if desired.

The scan-result messages are as follows. Except where noted, the
messages relate to the VERIFY and UNCLUTTER commands.

RMS FILE MANAGEMENT UTILITY Page 3-35___ ____ __________ _______

For fixable conditions, the message description shows the FIX command
you would later type in if the message occurred doing a read-only
VERIFY. Most of the other conditions should never occur. For these,
you will usually have to do most of the diagnosis yourself. Your
primary tools are SET INDEX, SET BUCKET, and DISPLAY BUCKET.

Access by key n1 failed for rfa1

The record with RFA rfa1 could not be accessed by the
indicated secondary key. This is normally caused by a put
or update that aborted after the user record was updated but
before all of its secondary keys were processed. This
inconsistency is fixable; specify FIX rfa1. If the fix
fails, "Could not insert key into secondary index" is
output.

If the ID of one or more entries is clobbered, it is
possible to get a cyclic fix. You fix key 0 and get "Access
... failed"; you fix a secondary key and get "No matching
data record ..."; you fix key 0 and get "Access ...
failed"; and so on.

Data bucket at page n1 points at page n2 but succeeding index entry does not

Normally consecutive data buckets are pointed at by
successive index entries (or the same index entry in a
horizontal search situation). This message can mean that a
whole page of records has been accidentally bypassed in the
data bucket chain. You will be able to access the affected
records by key, but not sequentially. To locate the
relevant index entries:

SET INDEX index-being-scanned BUCKET n1
DISPLAY BUCKET LAST
SET BUCKET UP
DISPLAY BUCKET KEY-VALUE "key of entry just DISPLAYed"

Data bucket clutter n%

This is output from a SPACE scan. It indicates the
percentage of total data bucket space that is currently
devoted to POINTER entries and records with the DELETEd
attribute on. This message is output for the primary key
only.

Data bucket fullness n%

This is output from a SPACE scan. It indicates the
percentage of total data bucket space that is currently in
use (including clutter).

RMS FILE MANAGEMENT UTILITY Page 3-36___ ____ __________ _______

Data record identified by back pointer for rfa1

The RFA field of the data record at rfa1 points at another
data record rather than at a POINTER record.

Duplicate key encountered for rfa1

Duplicates are not allowed for the key being scanned, but
the entry at rfa1 has the same key value as the entry that
precedes it.

Key access aborted for rfa1

An unexpected error occurred in RMS when the record at rfa1
was accessed by key. This may indicate clobbered index
buckets or a bug in RMS.

Key access failed for rfa1

The record at rfa1 could not be found by a key access. This
may indicate clobbered index buckets. Other records earlier
in the same bucket may also be inaccessible.

Key value out of order for rfa1

The entry at rfa1 has a lower key value than the entry that
precedes it. If this message occurs, it is likely that "Key
access failed ..." will occur for the last entry in the
bucket. In the special case that the message occurs for a
record with the DELETEd attribute on, simply DELETE BUCKET
ID ID-of-rfa1 after making the bucket of rfa1 current.

No matching data record for RFA n1 (rfa1) of rfa2

The n1th RFA of the SIDR at rfa2 contains the pointer rfa1,
and rfa1 does not identify an existing record with the same
key value as appears in the SIDR. Normally this means that
a delete or update aborted after the record's entry was
updated but before all of the old secondary references were
deleted. This inconsistency is fixable; specify FIX rfa2
index-of-scan.

If the match did not occur because the data record contained
a different key value, RMSUTL also outputs "Access ... may
fail ...". This is because VERIFY KEY 0 may lead to "Access
... failed for rfa1". Specifying FIX rfa1 will correct the
problem if it does exist.

RMS FILE MANAGEMENT UTILITY Page 3-37___ ____ __________ _______

Page n1 not start of bucket OR ... clobbered OR not part of index n2

During the scan, RMSUTL tried to read a bucket at page n1,
and it was bad in some way. You will have to diagnose why;
start by specifying SET INDEX n2 BUCKET n1 and then
displaying the bucket's header.

POINTER entry does not point at data record for rfa1

The data record at rfa1 pointed back at a POINTER entry that
does not point at it. Normally this is caused when a put
aborted after a bucket split but before the record's POINTER
entry could be updated. This inconsistency is fixable;
specify FIX rfa1.

POINTER entry not found for rfa1

The data record at rfa1 pointed back at an empty slot. This
should not happen, but is fixable; specify FIX rfa1. This
message may occur in conjunction with "Access ... failed
..." messages.

CHAPTER 4

FORMAT OF AN RMS RECORD FILE______ __ __ ___ ______ ____

An RMS record file consists of a prologue section and a data section.
The prologue section is the repository of the file's attributes. The
data section contains your records (and indexes if applicable).

4.1 PROLOGUE SECTION________ _______

The prologue section of an RMS file contains a file descriptor. A
file descriptor contains all the permanent attributes you specified in
the DEFINE FILE command or in your program (the DEFINE FILE command is
described in Chapter 3). An indexed file also contains one or more
key descriptors and one or more area descriptors, including the
descriptor of area 0, which RMS creates. There is a second difference
as well. In nonindexed files, the data section immediately follows
the prologue. In indexed files, the data section starts at the next
page boundary.

The two types of fields in descriptors are argument block fields and
RMS-created fields. File attributes are specified to RMS when a file
is created. They are specified in argument blocks called FABs and
XABs (file and extended argument blocks).

4.1.1 File Descriptor For File Argument Block (FAB)____ __________ ___ ____ ________ _____ _____

A file descriptor contains the following FAB information. The
field-names recognized by RMSUTL are given.

o BUCKET-SIZE represents the unit of I/O for the file, and
it is specified in terms of pages (1 page =
512 words).

o BYTE-SIZE is the number of bits per byte in records in
this file. It must be 6, 7, or 9 for indexed
files, 7 for stream files, and not greater
than 36 for relative and sequential files.

FORMAT OF AN RMS RECORD FILE Page 4-2______ __ __ ___ ______ ____

o RECORD-SIZE If the record format is variable, this field
is the maximum number of bytes that can be in
a record in the file. If you try to write a
record whose size is larger than RECORD-SIZE,
an error status is returned and the record is
not written. However this check is bypassed
if RECORD-SIZE is 0.

If record format is fixed length, RECORD-SIZE
is the number of bytes in each record in the
file. If you perform an output operation and
do not set record size to the value of
RECORD-SIZE, RMS does not write the record and
returns an error.

o ORGANIZATION is SEQUENTIAL, RELATIVE, or INDEXED.

o FORMAT is either FIXED or VARIABLE.

A file descriptor also contains:

o AREA-COUNT is the number of areas defined for the file.

o AREA-OFFSET is the number of words in the prologue
preceding the first area descriptor.

o KEY-COUNT is the number of keys defined for the file.

o KEY-OFFSET is the number of words in the prologue
preceding the first key descriptor.

o PAGES-IN-FILE is the number of pages currently in the file.

4.1.2 Key Descriptor For Extended Argument Block (XAB)___ __________ ___ ________ ________ _____ _____

A key descriptor contains all the field-names of a KEY XAB:

o DATA-AREA This field must equal the ID field of some
AREA descriptor. RMS assigns the data buckets
for this key to that area and thereby sets
their bucket size. Note that, for the primary
key, the data buckets contain user data; and,
for secondary keys, they contain the keys by
themselves. If DATA-AREA is 0, the default
area is used, and its bucket size is taken
from the BUCKET-SIZE field of the file
descriptor.

FORMAT OF AN RMS RECORD FILE Page 4-3______ __ __ ___ ______ ____

o DATA-FILL provides a means of spreading out the data in
a file when you first load the file. This
field is used to indicate the number of words
that can be used in a data bucket when loading
this key's data buckets. For example, if it
is desirable that buckets be no more than half
full and the bucket size is 1 (=512 words),
this field would be set to 256. If DATA-FILL
is 0, the entire bucket can be filled.

o DATA-TYPE determines the byte size RMS uses to compare
keys. Therefore, it must be set so that key
byte size matches the BYTE-SIZE field of the
file descriptor. It should be SIXBIT for
6-bit bytes. It should be ASCII for 7-bit
bytes. It should be EBCDIC for 9-bit bytes.

o ATTRIBUTES The ATTRIBUTES field controls the handling of
keys during put and update operations. The
"changeable" attribute means you can change
the value of this key when you update a
record. "Changeable" can not be specified for
the primary key. The "duplicates" attribute
means that multiple records in the file can
contain the same value of this key. Records
having duplicate keys are stored in the file
so that sequential retrieval of them is in the
order in which they were stored.

o INDEX-AREA must equal the ID field of some AREA
descriptor. It assigns the index buckets for
this key to that area and thereby sets their
bucket size. If INDEX-AREA is 0, the default
area is used, and its bucket size is taken
from the BUCKET-SIZE field of the file
descriptor.

o INDEX-FILL provides a means of spreading out the index
data in a file when you first load the file.
This field is used to indicate the number of
words that can be used in an index bucket when
loading this key's index buckets. For
example, if it is desirable that index buckets
be no more than half full and the bucket size
is 1 (=512 words), this field would be set to
256. If INDEX-FILL is 0, the entire bucket
can be filled.

FORMAT OF AN RMS RECORD FILE Page 4-4______ __ __ ___ ______ ____

o KEY-OF-REFERENCE

contains a number that indicates which key
this is: 0 for the primary key, 1 for the
first secondary key, and so on.

o POSITIONs define the starting byte number of each
segment of this key. Each starting position
is paired with the corresponding size value.
A key has between one and eight segments. A
size field containing 0 implies that the
preceding segment was the last. Key segments
are logically concatenated to form a
particular key value.

o SIZEs define the number of bytes in each segment of
this key. Each size value is paired with the
corresponding starting position. A key has
between one and eight segments. A size field
containing 0 implies that the preceding
segment was the last. Key segments are
logically concatenated to form a particular
key value. The sum of the specified segment
sizes must be less than 256 characters.

A key descriptor also contains the following:

o LEVELS is the number of levels in this key's index.

o NEXT-KEY is the offset of the next key descriptor in
the prologue.

o ROOT-PAGE is the page number where the root bucket for
this key's index is located.

An indexed file can have from 1 to 17 areas. Area 0 is implicitly
defined by RMS. The bucket size of area 0 is taken from the
BUCKET-SIZE field of the file descriptor. BUCKET-SIZE is the only
field in an area descriptor.

4.2 DATA SECTION OF SEQUENTIAL AND RELATIVE FILES____ _______ __ __________ ___ ________ _____

Records may cross bucket boundaries in a sequential or relative file.
The only control information in the data section of these file
organizations is the record header. A sequential or relative record
header consists of one word, and its format is:

FORMAT OF AN RMS RECORD FILE Page 4-5______ __ __ ___ ______ ____

o ATTRIBUTES DELETED and USED. DELETED is set if the
record is deleted. USED is set when the
record is created. RMS checks USED to
determine if it is past the EOF (end-of-file)
or scanning an empty cell in a relative file.

o SIZE is the number of bytes in the record.

4.3 DATA SECTION OF AN INDEXED FILE____ _______ __ __ _______ ____

Figure 4-1 displays the relationship between a primary index and a
secondary index. Each SIDR points at the user data record that
contains the same key value as in the SIDR.

PROLOGUE

| |
| KEY |
| DEFINITIONS |

|
|
|

| |
| |
| |

--------------- ---------------
PRIMARY		SECONDARY
INDEX		INDEX
BUCKETS		BUCKETS
--------------- ---------------

| |
| |
| |

--------------- ---------------
USER		SIDR
DATA	<----------------------	
BUCKETS		BUCKETS
--------------- ---------------

<-------------------DATA BUCKETS-------------------->

Figure 4-1 RMS Record File Format

FORMAT OF AN RMS RECORD FILE Page 4-6______ __ __ ___ ______ ____

4.3.1 Bucket Headers______ _______

Each bucket in an indexed file contains a header describing its type
and other properties. A header contains the following fields:

o AREA-NUMBER is the number of the area to which the bucket
belongs.

o ATTRIBUTES can be RIGHTMOST and ROOT. ROOT identifies
the bucket as the root of an index structure.
RIGHTMOST indicates that the bucket contains
the highest group of key values at its level
in the index structure.

o LAST-ID is the largest entry ID that this bucket can
contain. It is normally 2**17 - 1.

o LEVEL is the number of levels between the bucket's
level and the data level. Thus data buckets
are level 0.

o NEXT-BUCKET is the page number of the next bucket at this
level of the index structure, unless this is a
rightmost bucket. In this case, it is the
page number of the leftmost bucket at this
level.

o NEXT-ID is the ID that is to be assigned to the next
entry stored in this bucket. An entry in an
index bucket does not have an ID.

o TYPE can be INDEX or DATA.

o WORDS-IN-USE is the number of words preceding the first
unused word in the bucket.

4.3.2 Entries in a Primary-Data Bucket_______ __ _ ____________ ______

Most entries in a primary-data bucket are your records. An entry can
also be an internal pointer to a moved record.

The common fields in an entry are:

o ID is the "address" of an entry within its
bucket.

FORMAT OF AN RMS RECORD FILE Page 4-7______ __ __ ___ ______ ____

o ATTRIBUTES can be any of the following normal cases.
DELETED means that the record has been deleted
and that RMS will expunge it when reclaiming
space in the bucket. DELETED+KEEP means that
the record has been deleted and that the only
way to expunge it is with RMSUTL. NIL
indicates an existing record. POINTER
indicates an entry that points at a record
that has been moved because of a bucket split.

The additional fields in a RECORD entry are:

o DATA is the contents of the record.

o RFA is the address in the file where the record
was originally stored. The record can still
be there, but if it is not, there is now a
POINTER entry there.

o SIZE is the number of bytes of data in the record.
This field is present only if record-format
for the file is variable.

The additional fields in a POINTER entry are:

o RFA is the address in the file where the record
was last moved to.

4.3.3 Entries in an Index Bucket_______ __ __ _____ ______

An entry in an index bucket contains the following fields:

o ATTRIBUTES are HIKEY or NIL. HIKEY is on if this entry
points to the bucket containing the highest
key value at its level in the index.

o DOWN-POINTER is the page number of the bucket whose keys
are all less than or equal to the value in
KEY-VALUE. Also, the lowest key value in the
pointed-to bucket is always greater than the
KEY-VALUE in the preceding entry.

o KEY-VALUE RMS uses the KEY-VALUE field to determine the
DOWN-POINTER to follow down an index during a
key access. Index entries are sorted in
ascending order by KEY-VALUE, so RMS uses the
DOWN-POINTER for the first KEY-VALUE field
that is greater than or equal to the key value
presented by the user.

FORMAT OF AN RMS RECORD FILE Page 4-8______ __ __ ___ ______ ____

4.3.4 Entries in a Secondary-Data Bucket_______ __ _ ______________ ______

Secondary-data buckets maintain the sorted ordering of keys in a
secondary index and are the link between secondary key values and the
various records that contain them. An SIDR contains the following
fields:

o ID is the address of the entry within its bucket.

o KEY-VALUE contains the key value upon which the entry is
sorted.

o RFA 1 - RFA n identify the records whose key values match
the value in KEY-VALUE. These pointers are
not modified when a record is moved during a
bucket split. Thus, they may point at POINTER
entries, which in turn point at the data
records.

When a record is deleted, RMS locates each
SIDR that points at the record and sets the
relevant RFA in each to NIL. When a secondary
key value of a record is modified, RMS locates
the SIDR containing the old key value and sets
the relevant RFA to NIL.

o SIZE is the number of words used to hold the KEY
field and all the RFA fields.

CHAPTER 5

RMS STATUS CODES___ ______ _____

Normally RMSUTL, the COBOL OTS, and BASOTS transform status codes
returned by RMS into responses that do not involve telling you the
actual code. However, it is possible for an unprogrammed-for
condition to occur, in which case COBOL OTS and BASOTS display the
underlying RMS status code.

There are two types of status codes which are returned by RMS:

1. ER$ - error codes

2. SU$ - success codes

Error codes are larger than success codes, and the minimum error code
is ER$MIN. Thus, if RMS returns a code greater than or equal to
ER$MIN, it must be an error code. All status codes are represented by
a mnemonic symbol preceded by a two-character string indicating
whether the code is a success or error code.

ER$MIN may change in the future, but it is currently 300000 octal.
SU$MIN (success minimum code) may also change in the future, but it is
currently 1000 octal. However, the relative value of status codes
with respect to SU$MIN and ER$MIN will not change.

The following table names and describes each of the RMS status codes.
If an STV (subsidary status value) value is associated with an error
status, its meaning is also described. The VALUE field is the status
code's offset in decimal (and octal) from xx$MIN.

RMS STATUS CODES Page 5-2___ ______ _____

Table 5-1

RMS Status Codes

NAME VALUE MEANING

SU$SUC 0 Operation was successful.

SU$IDX 1 Index could not be updated because an
unexpected error (for example, I/O) occurred
while updating the index. This is precisely
the state an indexed file is in if an
ill-timed crash occurs. The record is still
accessible but efficiency can be affected, so
you should consider reorganization (use the
UNCLUTTER command or reload the file).

SU$REO 2 File should be reorganized because RMS needed
to insert a record into a bucket that has no
more record IDs available. This can occur
only if a large number of deletes, updates,
and puts are done to a bucket because there
are 2**17-1 IDs available per bucket. This
status is returned both on the $PUT that
caused the status and when the file is closed.

SU$RRV 3 An internal record pointer could not be
updated. This state can be reached as a
result of a crash during $PUT and $UPDATE.
This status code merely shows a case where the
state has been reached. It shows that one or
more records can not be accessible by its
secondary key, or by RFA addressing.
Reorganization is suggested, (use the
UNCLUTTER command or reload the file).

SU$DUP 4 A record was $PUT or $UPDATE, and one or more
of its key values was in a record already in
the file. SU$DUP applies rather than ER$DUP
because XB$DUP was set for each such key.

RMS STATUS CODES Page 5-3___ ______ _____

ER$AID 0 AID field in AREA XAB is not greater than AID
field in preceding AREA XAB, or it is 0 or
greater than 16. STV contains the address of
the bad XAB.

ER$BKZ 4 BKZ in AREA XAB is 0 or greater than 7. STV
contains the address of the bad XAB.

ER$BLN 5 BLN value in argblk is not correct for the
specified BID value.

ER$BSZ 6 BSZ is not 7 for stream file or BSZ is 0 or
greater than 36 for some other file type.

ER$BUG 7 Internal error detected in RMS. If the
internal error was caused by a monitor
detected condition, the STV field contains the
monitor error code.

ER$CCF 8 (10) Can't $CLOSE file. An unusual condition arose
that prevented RMS from closing the file.
Check the STV field for the monitor error
code.

ER$CCR 9 (11) Can't $CONNECT RAB because another RAB is
already connected to the indicated file.

ER$CEF 11 (13) Can't $ERASE file. RMS could not erase a file
for an unknown reason. Check the STV field
for the monitor error code.

ER$CGJ 12 (14) Can't get a JFN for this file for an unknown
reason. Check the STV field for the monitor
error code.

ER$CHG 13 (15) Illegal key value change. An $UPDATE was done
in which the value of a particular key in the
record was changed, and the key was defined
without the XB$CHG attribute. STV contains
the key of reference of the improper key
value. If there is more than one improper key
value, the lowest key of reference is placed
in STV.

ER$COD 14 (16) COD field in XAB not XAALL, XADAT, XA$KEY,
or XA$SUM. STV contains the address of the
bad XAB.

ER$COF 15 (17) Can't open file. Caused by an unexpected
error when RMS tried to open the file. Check
the STV field for the monitor error code.

RMS STATUS CODES Page 5-4___ ______ _____

ER$CUR 16 (20) No current record. Caused by a $UPDATE,
$TRUNCATE, or $DELETE that was not preceded by
a successful $FIND or $GET operation.

ER$DAN 17 (21) DAN field of KEY XAB contained value greater
than your highest area ID. STV contains the
address of the bad XAB.

ER$DEL 18 (22) A record accessed with RFA addressing has been
deleted since you saved the RFA.

ER$DEV 19 (23) Device not disk (RMS-10), device not disk or
terminal (RMS-20), or device not disk on
$CREATE.

ER$DME 22 (26) Dynamic memory exhausted. RMS could not
allocate temporary storage for buffers, and so
on. If you set MBF to a large value on your
$CONNECTs, you might try using a smaller
value.

ER$DTP 23 (27) DTP field in KEY XAB is not XBSIX, XBSTG, or
XB$EBC, or BSZ in FAB is not respectively 6,
7, or 9. STV contains the address of the bad
XAB.

ER$DUP 24 (30) A record was $PUT or $UPDATE, and one or more
of its key values was in a record already in
the file. ER$DUP applies rather than SU$DUP
because XB$DUP was not set for some of them.

ER$EDQ 25 (31) ENQ/DEQ monitor error. An attempt to (un)lock
a record (or file) resulted in an unexpected
error from the monitor. Check the STV field
for the monitor error code.

ER$EOF 26 (32) You sequentially read ($FIND or $GET) past the
last record in the file or index.

ER$FAB 27 (33) BID field of FAB did not contain FA$TYP.

ER$FAC 28 (34) The file access field in the FAB is not
compatible with what you did.

1. Occurs if FB$PUT not set on a $CREATE.

2. Occurs if a record operation ($GET, $PUT,
...) is attempted with the corresponding
FAC bit not set.

RMS STATUS CODES Page 5-5___ ______ _____

ER$FEX 29 (35) You tried to $CREATE an existing file, and
FB$CIF and FB$SUP were both off.

ER$FLG 30 (36) XB$CHG was set for primary key. STV contains
the address of the bad XAB.

ER$FLK 31 (37) File already locked. Someone else has already
opened and locked the file with an access
incompatible with the access you requested.

ER$FNC 33 (41) You cannot $ERASE a file when anyone else has
it open. Just wait and try again.

ER$FNF 34 (42) File not found. The file name you specified
by FNA did not identify any file.

ER$FSI 96 (140) File spec on $CREATE, $ERASE, or $OPEN
contained illegal syntax of some sort (for
example, two directory specs).

ER$FUL 37 (45) An RMS file can be no larger than 256K pages.

ER$IAL 38 (46) Illegal argument on call.

ER$IAN 39 (47) IAN field of KEY XAB contained value greater
than your highest area ID. STV contains the
address of the bad XAB.

ER$IFI 43 (53) The IFI field did not identify an internal
file block. This is normally caused by a
$CLOSE or $DISPLAY on a FAB that has not been
correctly opened.

ER$IMX 45 (55) Multiple SUMMARY or DATE XABS appeared in an
XAB chain on $OPEN or $DISPLAY. STV contains
the address of the bad XAB.

ER$ISI 48 (60) The ISI field did not identify an internal
record block. This is normally caused by a
record operation on a RAB that has not been
correctly connected.

ER$JFN 49 (61) On $OPEN or $CREATE or $ERASE, you specified a
nonzero JFN to RMS-10, or you specified a JFN
that TOPS-20 did not recognize, or you
specified the JFN of an open file.

ER$KBF 50 (62) You did a $FIND or $GET with RAC equal to
RB$KEY, but did not set KBF.

RMS STATUS CODES Page 5-6___ ______ _____

ER$KEY 51 (63) KBF on a key access to a relative file pointed
to a zero or a number greater than the MRN
value for the file.

ER$KRF 52 (64) You specified an incorrect key of reference
for an indexed file. This can happen on a key
$GET, key $FIND, or $CONNECT that specified a
KRF greater than the highest key defined for
the file.

ER$KSZ 53 (65) You specified a KSZ value on a random $GET or
random $FIND that is greater than the defined
length of the key.

ER$MRS 56 (70) Invalid MRS value on a $CREATE, caused by a
value of zero when RFM is FB$FIX or ORG is
FB$REL.

ER$NEF 57 (71) Not at end of file. Caused by an attempt to
$PUT into the middle of a sequential file.

ER$NPK 59 (73) No primary key. Caused by an attempt to
$CREATE an indexed file without specification
of a primary key. In other words, first KEY
XAB in chain had a nonzero REF field.

ER$NXT 60 (74) Incorrect value of NXT field and XAB, caused
by an address in the range 1-17. STV contains
the address of the bad XAB.

ER$ORD 61 (75) Either KEY or AREA XABS are not in ascending
order with respect to their ID field
(respectively REF and AID). STV contains the
address of the bad XAB.

ER$ORG 62 (76) ORG was not FBSEQ, FBREL, or FB$IDX on a
$CREATE.

ER$PEF 63 (77) Can't position to EOF. Caused by RB$EOF being
set on $CONNECT of nonsequential file.

ER$PRV 66 (102) Privilege Violation. Caused by an attempt to
open file for access for which you don't have
the rights.

ER$RAB 68 (104) BID field of RAB did not contain RA$TYP.

ER$RAC 69 (105) RAC was not RBSEQ, RBKEY, or RB$RFA on a
$FIND or $GET, or RAC was not RB$SEQ or RB$KEY
on a $PUT.

RMS STATUS CODES Page 5-7___ ______ _____

ER$RAT 70 (106) You specified an invalid RAT value on a
$CREATE. RAT was nonzero and not FB$BLK, or
it was FB$BLK for a stream file.

ER$RBF 71 (107) RBF was not set up on a $PUT or an $UPDATE.

ER$REF 72 (110) REF field in KEY XAB is not greater than REF
field in preceding KEY XAB, or it is greater
than 255. STV contains the address of the bad
XAB.

ER$RFA 75 (113) The RFA field on an RFA access contained zero
or identified a never used cell.

ER$RFM 76 (114) On a $CREATE, RFM was FB$LSA or FB$STM and ORG
was not FB$SEQ, or RFM was not FB$LSA, FB$STM,
FB$FIX, or FB$VAR.

ER$RLK 77 (115) Record locked. Caused by an attempt to access
a record that is currently locked by another
process.

ER$RNF 78 (116) Record not found occurs in the following
situations:

1. Key $FIND or key $GET to cell in relative
file that is empty or contains a deleted
record.

2. Exact key access. There is no record with
the specified key value.

3. Generic key access There is no record
whose key starts with the specified key
value.

4. (Generic) approximate key access is
attempted. The specified key value is
greater than (RB$KGE) or greater than or
equal to (RB$KGT) for any key in the
specified index.

RMS STATUS CODES Page 5-8___ ______ _____

ER$RSZ 84 (124) RSZ not equal to size of record on $UPDATE, or
RSZ was not valid on $PUT:

1. RFM is FB$FIX and RSZ is not equal to MRS.

2. RSZ is greater than MRS.

3. ORG is FB$IDX and RSZ is greater than the
number of bytes in a data-record bucket.

ER$RTB 85 (125) Move mode applied on a $GET, when the record
was larger than the number of words specified
in USZ. Note that RMS does fill your buffer.
Check the STV field for the number of bytes
actually in the record.

ER$SEQ 86 (126) Keys out of sequence. Caused by a sequential
$PUT to an indexed file in which the primary
key value is not greater than the key value on
the previous $PUT. This restriction is
enforced only if the last operation was also a
sequential $PUT.

ER$SIZ 87 (127) The number of bytes in a key is 0 or greater
than 255. STV contains the address of the bad
XAB.

ER$UBF 90 (132) UBF was not set up on a $CONNECT or a $GET.

ER$UDF 91 (133) The file is in an undefined state and should
be reorganized. STV contains a code that
further explains the state of the file (see
Table 5-2).

ER$XAB 94 (136) BID field of XAB did not contain XA$TYP. STV
contains the address of the bad XAB.

RMS STATUS CODES Page 5-9___ ______ _____

The following table describes the STV values for ER$UDF. The VALUE
field is an offset from ER$MIN.

Table 5-2

STV Values for ER$UDF

NAME VALUE MEANING

ER$RRV 81 (121) Bad internal record pointer encountered in
file.

FE$BEM 320 (500) Empty index bucket detected.

FE$BFC 321 (501) Bad file class found in file FDB.

FE$BHE 322 (502) Bucket header has bad format.

FE$HNF 327 (507) File prologue header was not found.

FE$NOA 328 (510) No area descriptors were found in the file.

FE$NOI 329 (511) No index descriptors were found in the file.

FE$NOU 332 (512) No data record found for RFA in secondary
index.

APPENDIX A

USAGE OF AN RMS FILE FROM BOTH BASIC+2 AND COBOL-74_____ __ __ ___ ____ ____ ____ _______ ___ ________

(TOPS-20 ONLY)________ _____

When you create an RMS file to be used by both BASIC+2 and COBOL-74,
you should observe the following rules:

1. The file must be indexed and its keys must be ASCII.

2. A record may contain only:

COBOL BASIC_____ _____

DISPLAY-7 NAME$
COMPUTATIONAL NAME%
INDEX NAME%
COMPUTATIONAL-1 NAME

3. A COBOL record may not contain a group-level field that has
an OCCURS clause.

4. There must be no usage of the JUSTIFY or SYNC keywords.

5. You must declare fields in the same order, set string lengths
the same, and set array bounds the same.

All the file parameters established by COBOL can be processed in
BASIC+2 Version 2.1 or later.

All the indexed file parameters established by BASIC+2 can be
processed by COBOL. However, full compatibility is achieved only
when:

o The file is defined with duplicates not allowed for the
primary key.

o Changes are allowed for all secondary keys.

USAGE OF AN RMS FILE FROM BOTH BASIC+2 AND COBOL-74 Page A-2_____ __ __ ___ ____ ____ ____ _______ ___ ________

If the primary key is defined such that duplicates are allowed, you
must have a DECLARATIVE procedure to intercept the error COBOL
generates for this condition. For example,

ENVIRONMENT DIVISION.
FILE-CONTROL.

SELECT RMS-FILE ASSIGN TO DSK;
.
.
.

FILE STATUS IS FS-1, FS-2, ACTION-CODE.
.
.
.

DATA DIVISION.
.
.
.

01 FS-1 PIC 99.
01 FS-2 PIC 9(10).
01 FS-2-IMAGE REDEFINES FS-2.

02 FILLER PIC X(7).
02 ERR-CODE PIC X(3).

01 ACTION-CODE INDEX.
.
.
.

PROCEDURE DIVISION.
DECLARATIVES.
OPEN-ERROR SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON RMS-FILE.
OPEN-ERROR-1.

IF ERR-CODE = "523"
MOVE 1 TO ACTION-CODE.

OPEN-ERROR-EXIT.
EXIT.

END DECLARATIVES.
.
.
.

Paragraph-name. or Section-name SECTION.
remainder of PROCEDURE DIVISION

USAGE OF AN RMS FILE FROM BOTH BASIC+2 AND COBOL-74 Page A-3_____ __ __ ___ ____ ____ ____ _______ ___ ________

If a file defined in BASIC+2 has a secondary key defined without
changes allowed, you can use the file freely in COBOL with one
exception. To detect an attempt (by a terminal operator for example)
to update the key, you must have a DECLARATIVE procedure that checks
for an error code (ERR-CODE) of 506. Alternatively you can eliminate
the problem by using RMSUTL to make all such keys changeable. See the
description of the CHANGE PROLOG command in section 3.6.1.

INDEX

Access, Bucket (Cont.)
key, 2-6 entries in secondary-data,
random, 1-3 4-8

Access efficiency, Bucket headers, 4-6
key, 2-8 BUCKET-SIZE, 4-1
write, 2-10 /BUCKET-SIZE: switch, 3-13

Access methods, 1-2 Buckets,
Access, 1-3 data, 2-7

random, 2-3 index, 2-7
sequential, 1-3 primary-data, 2-8

Access to indexed files, secondary-data, 2-7
key, 2-4 BYTE-SIZE, 4-1
sequential, 2-4 /BYTE-SIZE: switch, 3-13

Access to relative files,
random, 2-3
sequential, 2-3

Address, Cell,
format of record file, record, 2-3
2-8 CHANGE BUCKET command, 3-8

/APPEND switch, 3-22 CHANGE command, 3-8
Area, 1-3 CHANGE PROLOGUE-DATA
AREA-COUNT, 4-2 command, 3-7
AREA-NUMBER, 4-6 /CHANGES-ALLOWED switch,
AREA-OFFSET, 4-2 3-14
Argument block, Clause,

extended, 4-2 records-to-use, 3-32
file, 4-1 CLOSE REPORT command, 3-10

ATTRIBUTES, 4-3, 4-5, 4-6, CLOSE RMS-FILE command,
4-7 3-10

Attributes, COBOL-74 file,
defining file, 3-13 usage of RMS, A-1

Codes,
ER$ error, 5-1
RMS status, 5-1, 5-2

BASIC+2 file, SU$ success, 5-1
usage of RMS, A-1 Command,

Block, CHANGE, 3-8
extended argument, 4-2 CHANGE BUCKET, 3-8
file argument, 4-1 CHANGE PROLOGUE-DATA, 3-7

Bucket, 1-3 CLOSE REPORT, 3-10
current, 3-4 CLOSE RMS-FILE, 3-10
entries in index, 4-7 DEFINE AREA, 3-15
entries in primary-data, DEFINE DATAFIELD, 3-11
4-6 DEFINE FILE, 3-13

Index-1

INDEX (CONT.)

Command (Cont.) Data section of indexed
DEFINE KEY, 3-14 files, 4-5
DELETE BUCKET-ENTRY, 3-16 Data section of relative
DELETE RECORD, 3-16 files, 4-4
DISPLAY BUCKET, 3-18 Data section of sequential
DISPLAY DATA, 3-18 files, 4-4
DISPLAY PROLOGUE-DATA, DATA-AREA, 4-2
3-17 DATA-FILL, 4-3

EXIT, 3-31 DATA-TYPE, 4-3
FIX, 3-19 DEFINE AREA command, 3-15
HELP, 3-31 DEFINE DATAFIELD command,
INFORMATION, 3-20 3-11
OPEN RMS-FILE, 3-21 DEFINE FILE command, 3-13
REDEFINE, 3-23 DEFINE KEY command, 3-14
SET BUCKET, 3-24 Defining file attributes,
SET RECORD, 3-26 3-13
SPACE, 3-27 DELETE BUCKET-ENTRY command,
TAKE, 3-31 3-16
UNCLUTTER, 3-28 DELETE RECORD command, 3-16
VERIFY, 3-29 Descriptions,

Command descriptions, 3-5 command, 3-5
Command format, 3-1 Determining number of
Command status, 3-2 levels, 2-8
Commands, DISPLAY BUCKET command,

file-scanning, 3-4 3-18
secondary, 3-31 DISPLAY DATA command, 3-18

Commannd, Display output, 3-33
SET INDEX, 3-25 DISPLAY PROLOGUE-DATA

Comnmand, command, 3-17
OPEN REPORT, 3-22 /DISPLAY: switch, 3-12

Completion messages, 3-34 DOWN-POINTER, 4-7
Concepts, /DUPLICATES-ALLOWED switch,

RMS, 1-3 3-15
Conditions,

fixable, 3-35
Content,

key, 2-5 Efficiency,
Creating a file, 3-3 indexed file, 2-8
Currency indicators, 3-4 key access, 2-8
Current bucket, 3-4 write access, 2-10
Current key, 3-4 Entries in index bucket,
Current record, 3-4 4-7

Entries in primary-data
bucket, 4-6

Entries in secondary-data
/DAFILL: switch, 3-14 bucket, 4-8
/DANAME: switch, 3-14 Entry, 1-3
DATA, 4-7 fields in POINTER, 4-7
Data buckets, 2-7 fields in RECORD, 4-7
Data in a file, ER$ error codes, 5-1

manipulating, 3-3

Index-2

INDEX (CONT.)

ER$UDF, File-scanning output, 3-34
STV values for, 5-9 Files,

Error codes, data section of indexed,
ER$, 5-1 4-5

EXIT command, 3-31 data section of relative,
Extended argument block, 4-4

4-2 data section of
sequential, 4-4

indexed, 2-3
key access to indexed,

FAB, 2-4
file descriptor for, 4-1 properties of record, 2-1

Facilities, random access to relative,
RMS, 1-2 2-3

Field, relative, 2-2
SIDR ID, 4-8 sequential, 2-1
SIDR KEY-VALUE, 4-8 sequential access to
SIDR RFA, 4-8 indexed, 2-4
SIDR SIZE, 4-8 sequential access to

Fields in POINTER entry, relative, 2-3
4-7 stream, 1-2

Fields in RECORD entry, 4-7 FIX command, 3-19
File, Fixable conditions, 3-35

creating a, 3-3 FORMAT, 4-2
keys in indexed, 2-6 Format,
manipulating data in a, command, 3-1
3-3 RMS record file, 4-5

report, 3-33 Format of record file
RMS record, 4-1 address, 2-8
usage of RMS BASIC+2, A-1 Format of RMS record file,
usage of RMS COBOL-74, 4-1
A-1 /FORMAT: switch, 3-14

File address, Formats,
format of record, 2-8 records-to-use, 3-32

File argument block, 4-1
File attributes,

defining, 3-13
File descriptor for FAB, Headers,

4-1 bucket, 4-6
File efficiency, HELP command, 3-31

indexed, 2-8 High-bound,
File format, records-to-use, 3-32

RMS record, 4-5
File management utility,

RMS, 3-1
File manipulation, 3-3 /IAFILL: switch, 3-15
File operations, 1-2 /IANAME: switch, 3-15
File organization, 1-3 ID, 1-3, 4-6

relative, 2-2 Index,
sequential, 2-1 shaping your, 2-10

File scanning, 3-4 Index bucket,
File-scanning commands, 3-4 entries in, 4-7

Index-3

INDEX (CONT.)

Index buckets, 2-7 Manipulating data in a file,
INDEX-AREA, 4-3 3-3
INDEX-FILL, 4-3 Manipulation,
Indexed file, file, 3-3

keys in, 2-6 Matches,
Indexed file efficiency, key, 2-4

2-8 /MAXIMUM-RECORD-SIZE:
Indexed files, 2-3 switch, 3-21

data section of, 4-5 Messages,
key access to, 2-4 completion, 3-34
sequential access to, 2-4 scan-result, 3-34, 3-35

Indexes, 2-5 Methods,
Indicators, access, 1-2

currency, 3-4 Mode,
INFORMATION command, 3-20 access, 1-3
Introduction RMS, 1-1 random access, 2-3

sequential access, 1-3

Key,
current, 3-4 NEXT-BUCKET, 4-6

KEY, NEXT-ID, 4-6
records-to-use, 3-32 NEXT-KEY, 4-4

Key access, 2-6 /NOACCESS switch, 3-30
Key access efficiency, 2-8 /NODISPLAY switch, 3-31
Key access to indexed files, /NOFIX switch, 3-30

2-4 Number,
Key content, 2-5 relative record, 2-2
Key descriptor for XAB, 4-2 Number of levels,
Key matches, 2-4 determining, 2-8
KEY-COUNT, 4-2
KEY-OF-REFERENCE, 4-4
KEY-OFFSET, 4-2
KEY-VALUE, 4-7 OPEN REPORT comnmand, 3-22
Keys, OPEN RMS-FILE command, 3-21

storage of, 2-6 Operations,
Keys in indexed file, 2-6 file, 1-2

record, 1-2
ORGANIZATION, 4-2
Organization,

LAST-ENTRY, file, 1-3
records-to-use, 3-33 relative file, 2-2

LAST-ID, 4-6 sequential file, 2-1
LEVEL, 4-6 Output,
LEVELS, 4-4 display, 3-33
Levels, file-scanning, 3-34

determining number of, Overview record management,
2-8 1-1

Low-bound, Overview RMS, 1-1
records-to-use, 3-32

Index-4

INDEX (CONT.)

PAGES-IN-FILE, 4-2 Records-to-use low-bound,
POINTER entry, 3-32

fields in, 4-7 Records-to-use
POSITION, 4-4 RELATIVE-REC-NO, 3-33
Primary-data bucket, Records-to-use value-test,

entries in, 4-6 3-32
Primary-data buckets, 2-8 REDEFINE command, 3-23
Progress reports, 3-34 Relative file organization,
/PROGRESS: switch, 3-28, 2-2

3-30 Relative files, 2-2
Prologue, 1-3 data section of, 4-4
Prologue section, 4-1 random access to, 2-3
Properties of record files, sequential access to, 2-3

2-1 Relative record number, 2-2
Properties of RMS, 2-1 RELATIVE-REC-NO,

records-to-use, 3-33
Report file, 3-33
Reports,

Random access, 1-3 progress, 3-34
Random access mode, 2-3 Results,
Random access to relative scan, 3-34

files, 2-3 RFA, 1-3, 2-8, 4-7
Record, RMS,

current, 3-4 introduction, 1-1
Record cell, 2-3 overview, 1-1
RECORD entry, properties of, 2-1

fields in, 4-7 RMS BASIC+2 file,
Record file, usage of, A-1

format of RMS, 4-1 RMS COBOL-74 file,
RMS, 4-1 usage of, A-1

Record file address, RMS concepts, 1-3
format of, 2-8 RMS facilities, 1-2

Record file format, RMS file management utility,
RMS, 4-5 3-1

Record files, RMS record file, 4-1
properties of, 2-1 format of, 4-1

Record management, RMS record file format, 4-5
overview, 1-1 RMS status codes, 5-1, 5-2

Record number, RMS usage rules, A-1
relative, 2-2 RMSUTL, 3-1

Record operations, 1-2 RMSUTL rules, 3-1
RECORD-SIZE, 4-2 ROOT-PAGE, 4-4
/RECORD-SIZE: switch, 3-14 Rules,
Records-to-use clause, 3-32 RMS usage, A-1
Records-to-use formats, RMSUTL, 3-1

3-32
Records-to-use high-bound,

3-32
Records-to-use KEY, 3-32 Scan results, 3-34
Records-to-use LAST-ENTRY, Scan-result messages, 3-34,

3-33 3-35

Index-5

INDEX (CONT.)

Scanning, /FORMAT:, 3-14
file, 3-4 /IAFILL:, 3-15

Secondary commands, 3-31 /IANAME:, 3-15
Secondary-data bucket, /MAXIMUM-RECORD-SIZE:,

entries in, 4-8 3-21
Secondary-data buckets, 2-7 /NOACCESS, 3-30
Section, /NODISPLAY, 3-31

prologue, 4-1 /NOFIX, 3-30
Sequential access, 1-3 /PROGRESS:, 3-28, 3-30
Sequential access to /RECORD-SIZE:, 3-14

indexed files, 2-4
Sequential access to

relative files, 2-3
Sequential file TAKE command, 3-31

organization, 2-1 TYPE, 4-6
Sequential files, 2-1

data section of, 4-4
SET BUCKET command, 3-24
SET INDEX commannd, 3-25 UNCLUTTER command, 3-28
SET RECORD command, 3-26 Usage of RMS BASIC+2 file,
Shaping your index, 2-10 A-1
SIDR, 2-7 Usage of RMS COBOL-74 file,
SIDR ID field, 4-8 A-1
SIDR KEY-VALUE field, 4-8 Usage rules,
SIDR RFA field, 4-8 RMS, A-1
SIDR SIZE field, 4-8 Utility,
SIZE, 4-4, 4-5, 4-7 RMS file management, 3-1
SPACE command, 3-27
Status,

command, 3-2
Status codes, Value-test,

RMS, 5-1, 5-2 records-to-use, 3-32
Storage of keys, 2-6 Values for ER$UDF,
Stream files, 1-2 STV, 5-9
STV values for ER$UDF, 5-9 VERIFY command, 3-29
SU$ success codes, 5-1
Success codes,

SU$, 5-1
Switch, WORDS-IN-USE, 4-6

/APPEND, 3-22 Write access efficiency,
/BUCKET-SIZE:, 3-13 2-10
/BYTE-SIZE:, 3-13
/CHANGES-ALLOWED, 3-14
/DAFILL:, 3-14
/DANAME:, 3-14 XAB,
/DISPLAY:, 3-12 key descriptor for, 4-2
/DUPLICATES-ALLOWED, 3-15

Index-6

