Trailing-Edge
-
PDP-10 Archives
-
SRI_NIC_PERM_FS_1_19910112
-
kcc-5/lib/math/acos.c
There are 7 other files named acos.c in the archive. Click here to see a list.
/*
* +++ NAME +++
*
* ACOS Double precision arc cosine
*
* +++ INDEX +++
*
* ACOS
* machine independent routines
* trigonometric functions
* math libraries
*
* +++ DESCRIPTION +++
*
* Returns double precision arc cosine of double precision
* floating point argument.
*
* +++ USAGE +++
*
* double acos(x)
* double x;
*
* +++ REFERENCES +++
*
* Fortran IV-plus user's guide, Digital Equipment Corp. pp B-1.
*
* +++ RESTRICTIONS +++
*
* The maximum relative error for the approximating polynomial
* in atan is 10**(-16.82). However, this assumes exact arithmetic
* in the polynomial evaluation. Additional rounding and
* truncation errors may occur as the argument is reduced
* to the range over which the polynomial approximation
* is valid, and as the polynomial is evaluated using
* finite-precision arithmetic.
*
* +++ PROGRAMMER +++
*
* Fred Fish
* Goodyear Aerospace Corp, Arizona Div.
* (602) 932-7000 work
* (602) 894-6881 home
*
* Updated Dec 85 for inclusion on standard math library. This routine
* now conforms with the description of the acos function as defined in
* Harbison & Steele's "C: A Reference Manual", section 11.3.2
*
* +++ INTERNALS +++
*
* Computes arccosine(X) from:
*
* (1) If X = 0.0 then acos(X) = PI/2.
*
* (2) If X = 1.0 then acos(X) = 0.0
*
* (3) If X = -1.0 then acos(X) = PI.
*
* (4) If 0.0 < X < 1.0 then
* acos(X) = atan(Y)
* Y = sqrt[1-(X**2)] / X
*
* (4) If -1.0 < X < 0.0 then
* acos(X) = atan(Y) + PI
* Y = sqrt[1-(X**2)] / X
*
* ---
*/
#include "math.h"
#include "errno.h"
double acos(x)
double x;
{
double atan(), sqrt(), y;
if (x > 1.0 || x < -1.0) {
errno = EDOM;
return 0.0;
} else if (x == 0.0)
return HALFPI;
else if (x == 1.0)
return 0.0;
else if (x == -1.0)
return PI;
else {
y = atan(sqrt(1.0 - x * x) / x);
return (x > 0.0) ? y : (y + PI);
}
}