Trailing-Edge
-
PDP-10 Archives
-
decuslib10-02
-
43,50145/dqh64.ssp
There are 2 other files named dqh64.ssp in the archive. Click here to see a list.
C DH64 10
C ..................................................................DH64 20
C DH64 30
C SUBROUTINE DQH64 DH64 40
C DH64 50
C PURPOSE DH64 60
C TO COMPUTE INTEGRAL(EXP(-X*X)*FCT(X), SUMMED OVER X FROM DH64 70
C -INFINITY TO +INFINITY). DH64 80
C DH64 90
C USAGE DH64 100
C CALL DQH64 (FCT,Y) DH64 110
C PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT DH64 120
C DH64 130
C DESCRIPTION OF PARAMETERS DH64 140
C FCT - THE NAME OF AN EXTERNAL DOUBLE PRECISION FUNCTION DH64 150
C SUBPROGRAM USED. DH64 160
C Y - THE RESULTING DOUBLE PRECISION INTEGRAL VALUE. DH64 170
C DH64 180
C REMARKS DH64 190
C NONE DH64 200
C DH64 210
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED DH64 220
C THE EXTERNAL DOUBLE PRECISION FUNCTION SUBPROGRAM FCT(X) DH64 230
C MUST BE FURNISHED BY THE USER. DH64 240
C DH64 250
C METHOD DH64 260
C EVALUATION IS DONE BY MEANS OF 64-POINT GAUSSIAN-HERMITE DH64 270
C QUADRATURE FORMULA, WHICH INTEGRATES EXACTLY WHENEVER DH64 280
C FCT(X) IS A POLYNOMIAL UP TO DEGREE 127. DH64 290
C FOR REFERENCE, SEE DH64 300
C SHAO/CHEN/FRANK, TABLES OF ZEROS AND GAUSSIAN WEIGHTS OF DH64 310
C CERTAIN ASSOCIATED LAGUERRE POLYNOMIALS AND THE RELATED DH64 320
C GENERALIZED HERMITE POLYNOMIALS, IBM TECHNICAL REPORT DH64 330
C TR00.1100 (MARCH 1964), PP.213-214. DH64 340
C DH64 350
C ..................................................................DH64 360
C DH64 370
SUBROUTINE DQH64(FCT,Y) DH64 380
C DH64 390
C DH64 400
DOUBLE PRECISION X,Y,Z,FCT DH64 410
C DH64 420
X=.10526123167960546D2 DH64 430
Z=-X DH64 440
Y=.55357065358569428D-28*(FCT(X)+FCT(Z)) DH64 450
X=.9895287586829539D1 DH64 460
Z=-X DH64 470
Y=Y+.16797479901081592D-22*(FCT(X)+FCT(Z)) DH64 480
X=.9373159549646721D21 DH64 490
Z=-X DH64 500
Y=Y+.34211380112557405D-18*(FCT(X)+FCT(Z)) DH64 510
X=.8907249099964770D1 DH64 520
Z=-X DH64 530
Y=Y+.15573906246297638D-14*(FCT(X)+FCT(Z)) DH64 540
X=.8477529083379863D1 DH64 550
Z=-X DH64 560
Y=Y+.25496608991129993D-11*(FCT(X)+FCT(Z)) DH64 570
X=.8073687285010225D1 DH64 580
Z=-X DH64 590
Y=Y+.19291035954649669D-8*(FCT(X)+FCT(Z)) DH64 600
X=.7689540164040497D1 DH64 610
Z=-X DH64 620
Y=Y+.7861797788925910D-6*(FCT(X)+FCT(Z)) DH64 630
X=.7321013032780949D1 DH64 640
Z=-X DH64 650
Y=Y+.19117068833006428D-3*(FCT(X)+FCT(Z)) DH64 660
X=.69652411205511075D1 DH64 670
Z=-X DH64 680
Y=Y+.29828627842798512D-1*(FCT(X)+FCT(Z)) DH64 690
X=.66201122626360274D1 DH64 700
Z=-X DH64 710
Y=Y+.31522545665037814D1*(FCT(X)+FCT(Z)) DH64 720
X=.62840112287748282D1 DH64 730
Z=-X DH64 740
Y=Y+.23518847106758191D3*(FCT(X)+FCT(Z)) DH64 750
X=.59556663267994860D1 DH64 760
Z=-X DH64 770
Y=Y+.12800933913224380D5*(FCT(X)+FCT(Z)) DH64 780
X=.56340521643499721D1 DH64 790
Z=-X DH64 800
Y=Y+.52186237265908475D6*(FCT(X)+FCT(Z)) DH64 810
X=.53183252246332709D1 DH64 820
Z=-X DH64 830
Y=Y+.16283407307097204D8*(FCT(X)+FCT(Z)) DH64 840
X=.50077796021987682D1 DH64 850
Z=-X DH64 860
Y=Y+.39591777669477239D9*(FCT(X)+FCT(Z)) DH64 870
X=.47018156474074998D1 DH64 880
Z=-X DH64 890
Y=Y+.7615217250145451D10*(FCT(X)+FCT(Z)) DH64 900
X=.43999171682281376D1 DH64 910
Z=-X DH64 920
Y=Y+.11736167423215493D12*(FCT(X)+FCT(Z)) DH64 930
X=.41016344745666567D1 DH64 940
Z=-X DH64 950
Y=Y+.14651253164761094D13*(FCT(X)+FCT(Z)) DH64 960
X=.38065715139453605D1 DH64 970
Z=-X DH64 980
Y=Y+.14955329367272471D14*(FCT(X)+FCT(Z)) DH64 990
X=.35143759357409062D1 DH641000
Z=-X DH641010
Y=Y+.12583402510311846D15*(FCT(X)+FCT(Z)) DH641020
X=.32247312919920357D1 DH641030
Z=-X DH641040
Y=Y+.8788499230850359D15*(FCT(X)+FCT(Z)) DH641050
X=.29373508230046218D1 DH641060
Z=-X DH641070
Y=Y+.51259291357862747D16*(FCT(X)+FCT(Z)) DH641080
X=.26519724354306350D1 DH641090
Z=-X DH641100
Y=Y+.25098369851306249D17*(FCT(X)+FCT(Z)) DH641110
X=.23683545886324014D1 DH641120
Z=-X DH641130
Y=Y+.10363290995075777D18*(FCT(X)+FCT(Z)) DH641140
X=.20862728798817620D1 DH641150
Z=-X DH641160
Y=Y+.36225869785344588D18*(FCT(X)+FCT(Z)) DH641170
X=.18055171714655449D1 DH641180
Z=-X DH641190
Y=Y+.10756040509879137D19*(FCT(X)+FCT(Z)) DH641200
X=.15258891402098637D1 DH641210
Z=-X DH641220
Y=Y+.27203128953688918D19*(FCT(X)+FCT(Z)) DH641230
X=.12472001569431179D1 DH641240
Z=-X DH641250
Y=Y+.58739981964099435D19*(FCT(X)+FCT(Z)) DH641260
X=.9692694230711780D0 DH641270
Z=-X DH641280
Y=Y+.10849834930618684D20*(FCT(X)+FCT(Z)) DH641290
X=.69192230581004458D0 DH641300
Z=-X DH641310
Y=Y+.17168584234908370D20*(FCT(X)+FCT(Z)) DH641320
X=.41498882412107868D0 DH641330
Z=-X DH641340
Y=Y+.23299478606267805D20*(FCT(X)+FCT(Z)) DH641350
X=.13830224498700972D0 DH641360
Z=-X DH641370
Y=Y+.27137742494130398D20*(FCT(X)+FCT(Z)) DH641380
Y=Y*1.D-20
RETURN DH641390
END DH641400