Trailing-Edge
-
PDP-10 Archives
-
decuslib10-02
-
43,50145/fmfp.ssp
There are 2 other files named fmfp.ssp in the archive. Click here to see a list.
C FMFP 10
C ..................................................................FMFP 20
C FMFP 30
C SUBROUTINE FMFP FMFP 40
C FMFP 50
C PURPOSE FMFP 60
C TO FIND A LOCAL MINIMUM OF A FUNCTION OF SEVERAL VARIABLES FMFP 70
C BY THE METHOD OF FLETCHER AND POWELL FMFP 80
C FMFP 90
C USAGE FMFP 100
C CALL FMFP(FUNCT,N,X,F,G,EST,EPS,LIMIT,IER,H) FMFP 110
C FMFP 120
C DESCRIPTION OF PARAMETERS FMFP 130
C FUNCT - USER-WRITTEN SUBROUTINE CONCERNING THE FUNCTION TO FMFP 140
C BE MINIMIZED. IT MUST BE OF THE FORM FMFP 150
C SUBROUTINE FUNCT(N,ARG,VAL,GRAD) FMFP 160
C AND MUST SERVE THE FOLLOWING PURPOSE FMFP 170
C FOR EACH N-DIMENSIONAL ARGUMENT VECTOR ARG, FMFP 180
C FUNCTION VALUE AND GRADIENT VECTOR MUST BE COMPUTEDFMFP 190
C AND, ON RETURN, STORED IN VAL AND GRAD RESPECTIVELYFMFP 200
C N - NUMBER OF VARIABLES FMFP 210
C X - VECTOR OF DIMENSION N CONTAINING THE INITIAL FMFP 220
C ARGUMENT WHERE THE ITERATION STARTS. ON RETURN, FMFP 230
C X HOLDS THE ARGUMENT CORRESPONDING TO THE FMFP 240
C COMPUTED MINIMUM FUNCTION VALUE FMFP 250
C F - SINGLE VARIABLE CONTAINING THE MINIMUM FUNCTION FMFP 260
C VALUE ON RETURN, I.E. F=F(X). FMFP 270
C G - VECTOR OF DIMENSION N CONTAINING THE GRADIENT FMFP 280
C VECTOR CORRESPONDING TO THE MINIMUM ON RETURN, FMFP 290
C I.E. G=G(X). FMFP 300
C EST - IS AN ESTIMATE OF THE MINIMUM FUNCTION VALUE. FMFP 310
C EPS - TESTVALUE REPRESENTING THE EXPECTED ABSOLUTE ERROR.FMFP 320
C A REASONABLE CHOICE IS 10**(-6), I.E. FMFP 330
C SOMEWHAT GREATER THAN 10**(-D), WHERE D IS THE FMFP 340
C NUMBER OF SIGNIFICANT DIGITS IN FLOATING POINT FMFP 350
C REPRESENTATION. FMFP 360
C LIMIT - MAXIMUM NUMBER OF ITERATIONS. FMFP 370
C IER - ERROR PARAMETER FMFP 380
C IER = 0 MEANS CONVERGENCE WAS OBTAINED FMFP 390
C IER = 1 MEANS NO CONVERGENCE IN LIMIT ITERATIONS FMFP 400
C IER =-1 MEANS ERRORS IN GRADIENT CALCULATION FMFP 410
C IER = 2 MEANS LINEAR SEARCH TECHNIQUE INDICATES FMFP 420
C IT IS LIKELY THAT THERE EXISTS NO MINIMUM. FMFP 430
C H - WORKING STORAGE OF DIMENSION N*(N+7)/2. FMFP 440
C FMFP 450
C REMARKS FMFP 460
C I) THE SUBROUTINE NAME REPLACING THE DUMMY ARGUMENT FUNCT FMFP 470
C MUST BE DECLARED AS EXTERNAL IN THE CALLING PROGRAM. FMFP 480
C II) IER IS SET TO 2 IF , STEPPING IN ONE OF THE COMPUTED FMFP 490
C DIRECTIONS, THE FUNCTION WILL NEVER INCREASE WITHIN FMFP 500
C A TOLERABLE RANGE OF ARGUMENT. FMFP 510
C IER = 2 MAY OCCUR ALSO IF THE INTERVAL WHERE F FMFP 520
C INCREASES IS SMALL AND THE INITIAL ARGUMENT WAS FMFP 530
C RELATIVELY FAR AWAY FROM THE MINIMUM SUCH THAT THE FMFP 540
C MINIMUM WAS OVERLEAPED. THIS IS DUE TO THE SEARCH FMFP 550
C TECHNIQUE WHICH DOUBLES THE STEPSIZE UNTIL A POINT FMFP 560
C IS FOUND WHERE THE FUNCTION INCREASES. FMFP 570
C FMFP 580
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED FMFP 590
C FUNCT FMFP 600
C FMFP 610
C METHOD FMFP 620
C THE METHOD IS DESCRIBED IN THE FOLLOWING ARTICLE FMFP 630
C R. FLETCHER AND M.J.D. POWELL, A RAPID DESCENT METHOD FOR FMFP 640
C MINIMIZATION, FMFP 650
C COMPUTER JOURNAL VOL.6, ISS. 2, 1963, PP.163-168. FMFP 660
C FMFP 670
C ..................................................................FMFP 680
C FMFP 690
SUBROUTINE FMFP(FUNCT,N,X,F,G,EST,EPS,LIMIT,IER,H) FMFP 700
C FMFP 710
C DIMENSIONED DUMMY VARIABLES FMFP 720
DIMENSION H(1),X(1),G(1) FMFP 730
C FMFP 740
C COMPUTE FUNCTION VALUE AND GRADIENT VECTOR FOR INITIAL ARGUMENTFMFP 750
CALL FUNCT(N,X,F,G) FMFP 760
C FMFP 770
C RESET ITERATION COUNTER AND GENERATE IDENTITY MATRIX FMFP 780
IER=0 FMFP 790
KOUNT=0 FMFP 800
N2=N+N FMFP 810
N3=N2+N FMFP 820
N31=N3+1 FMFP 830
1 K=N31 FMFP 840
DO 4 J=1,N FMFP 850
H(K)=1. FMFP 860
NJ=N-J FMFP 870
IF(NJ)5,5,2 FMFP 880
2 DO 3 L=1,NJ FMFP 890
KL=K+L FMFP 900
3 H(KL)=0. FMFP 910
4 K=KL+1 FMFP 920
C FMFP 930
C START ITERATION LOOP FMFP 940
5 KOUNT=KOUNT +1 FMFP 950
C FMFP 960
C SAVE FUNCTION VALUE, ARGUMENT VECTOR AND GRADIENT VECTOR FMFP 970
OLDF=F FMFP 980
DO 9 J=1,N FMFP 990
K=N+J FMFP1000
H(K)=G(J) FMFP1010
K=K+N FMFP1020
H(K)=X(J) FMFP1030
C FMFP1040
C DETERMINE DIRECTION VECTOR H FMFP1050
K=J+N3 FMFP1060
T=0. FMFP1070
DO 8 L=1,N FMFP1080
T=T-G(L)*H(K) FMFP1090
IF(L-J)6,7,7 FMFP1100
6 K=K+N-L FMFP1110
GO TO 8 FMFP1120
7 K=K+1 FMFP1130
8 CONTINUE FMFP1140
9 H(J)=T FMFP1150
C FMFP1160
C CHECK WHETHER FUNCTION WILL DECREASE STEPPING ALONG H. FMFP1170
DY=0. FMFP1180
HNRM=0. FMFP1190
GNRM=0. FMFP1200
C FMFP1210
C CALCULATE DIRECTIONAL DERIVATIVE AND TESTVALUES FOR DIRECTION FMFP1220
C VECTOR H AND GRADIENT VECTOR G. FMFP1230
DO 10 J=1,N FMFP1240
HNRM=HNRM+ABS(H(J)) FMFP1250
GNRM=GNRM+ABS(G(J)) FMFP1260
10 DY=DY+H(J)*G(J) FMFP1270
C FMFP1280
C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DIRECTIONAL FMFP1290
C DERIVATIVE APPEARS TO BE POSITIVE OR ZERO. FMFP1300
IF(DY)11,51,51 FMFP1310
C FMFP1320
C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DIRECTION FMFP1330
C VECTOR H IS SMALL COMPARED TO GRADIENT VECTOR G. FMFP1340
11 IF(HNRM/GNRM-EPS)51,51,12 FMFP1350
C FMFP1360
C SEARCH MINIMUM ALONG DIRECTION H FMFP1370
C FMFP1380
C SEARCH ALONG H FOR POSITIVE DIRECTIONAL DERIVATIVE FMFP1390
12 FY=F FMFP1400
ALFA=2.*(EST-F)/DY FMFP1410
AMBDA=1. FMFP1420
C FMFP1430
C USE ESTIMATE FOR STEPSIZE ONLY IF IT IS POSITIVE AND LESS THAN FMFP1440
C 1. OTHERWISE TAKE 1. AS STEPSIZE FMFP1450
IF(ALFA)15,15,13 FMFP1460
13 IF(ALFA-AMBDA)14,15,15 FMFP1470
14 AMBDA=ALFA FMFP1480
15 ALFA=0. FMFP1490
C FMFP1500
C SAVE FUNCTION AND DERIVATIVE VALUES FOR OLD ARGUMENT FMFP1510
16 FX=FY FMFP1520
DX=DY FMFP1530
C FMFP1540
C STEP ARGUMENT ALONG H FMFP1550
DO 17 I=1,N FMFP1560
17 X(I)=X(I)+AMBDA*H(I) FMFP1570
C FMFP1580
C COMPUTE FUNCTION VALUE AND GRADIENT FOR NEW ARGUMENT FMFP1590
CALL FUNCT(N,X,F,G) FMFP1600
FY=F FMFP1610
C FMFP1620
C COMPUTE DIRECTIONAL DERIVATIVE DY FOR NEW ARGUMENT. TERMINATE FMFP1630
C SEARCH, IF DY IS POSITIVE. IF DY IS ZERO THE MINIMUM IS FOUND FMFP1640
DY=0. FMFP1650
DO 18 I=1,N FMFP1660
18 DY=DY+G(I)*H(I) FMFP1670
IF(DY)19,36,22 FMFP1680
C FMFP1690
C TERMINATE SEARCH ALSO IF THE FUNCTION VALUE INDICATES THAT FMFP1700
C A MINIMUM HAS BEEN PASSED FMFP1710
19 IF(FY-FX)20,22,22 FMFP1720
C FMFP1730
C REPEAT SEARCH AND DOUBLE STEPSIZE FOR FURTHER SEARCHES FMFP1740
20 AMBDA=AMBDA+ALFA FMFP1750
ALFA=AMBDA FMFP1760
C END OF SEARCH LOOP FMFP1770
C FMFP1780
C TERMINATE IF THE CHANGE IN ARGUMENT GETS VERY LARGE FMFP1790
IF(HNRM*AMBDA-1.E10)16,16,21 FMFP1800
C FMFP1810
C LINEAR SEARCH TECHNIQUE INDICATES THAT NO MINIMUM EXISTS FMFP1820
21 IER=2 FMFP1830
RETURN FMFP1840
C FMFP1850
C INTERPOLATE CUBICALLY IN THE INTERVAL DEFINED BY THE SEARCH FMFP1860
C ABOVE AND COMPUTE THE ARGUMENT X FOR WHICH THE INTERPOLATION FMFP1870
C POLYNOMIAL IS MINIMIZED FMFP1880
22 T=0. FMFP1890
23 IF(AMBDA)24,36,24 FMFP1900
24 Z=3.*(FX-FY)/AMBDA+DX+DY FMFP1910
ALFA=AMAX1(ABS(Z),ABS(DX),ABS(DY)) FMFP1920
DALFA=Z/ALFA FMFP1930
DALFA=DALFA*DALFA-DX/ALFA*DY/ALFA FMFP1940
IF(DALFA)51,25,25 FMFP1950
25 W=ALFA*SQRT(DALFA) FMFP1960
ALFA=DY-DX+W+W FMFP1970
IF(ALFA) 250,251,250 FMFP1971
250 ALFA=(DY-Z+W)/ALFA FMFP1972
GO TO 252 FMFP1973
251 ALFA=(Z+DY-W)/(Z+DX+Z+DY) FMFP1974
252 ALFA=ALFA*AMBDA FMFP1975
DO 26 I=1,N FMFP1980
26 X(I)=X(I)+(T-ALFA)*H(I) FMFP1990
C FMFP2000
C TERMINATE, IF THE VALUE OF THE ACTUAL FUNCTION AT X IS LESS FMFP2010
C THAN THE FUNCTION VALUES AT THE INTERVAL ENDS. OTHERWISE REDUCEFMFP2020
C THE INTERVAL BY CHOOSING ONE END-POINT EQUAL TO X AND REPEAT FMFP2030
C THE INTERPOLATION. WHICH END-POINT IS CHOOSEN DEPENDS ON THE FMFP2040
C VALUE OF THE FUNCTION AND ITS GRADIENT AT X FMFP2050
C FMFP2060
CALL FUNCT(N,X,F,G) FMFP2070
IF(F-FX)27,27,28 FMFP2080
27 IF(F-FY)36,36,28 FMFP2090
28 DALFA=0. FMFP2100
DO 29 I=1,N FMFP2110
29 DALFA=DALFA+G(I)*H(I) FMFP2120
IF(DALFA)30,33,33 FMFP2130
30 IF(F-FX)32,31,33 FMFP2140
31 IF(DX-DALFA)32,36,32 FMFP2150
32 FX=F FMFP2160
DX=DALFA FMFP2170
T=ALFA FMFP2180
AMBDA=ALFA FMFP2190
GO TO 23 FMFP2200
33 IF(FY-F)35,34,35 FMFP2210
34 IF(DY-DALFA)35,36,35 FMFP2220
35 FY=F FMFP2230
DY=DALFA FMFP2240
AMBDA=AMBDA-ALFA FMFP2250
GO TO 22 FMFP2260
C FMFP2270
C TERMINATE, IF FUNCTION HAS NOT DECREASED DURING LAST ITERATION FMFP2280
36 IF(OLDF-F+EPS)51,38,38 FMFP2290
C FMFP2300
C COMPUTE DIFFERENCE VECTORS OF ARGUMENT AND GRADIENT FROM FMFP2310
C TWO CONSECUTIVE ITERATIONS FMFP2320
38 DO 37 J=1,N FMFP2330
K=N+J FMFP2340
H(K)=G(J)-H(K) FMFP2350
K=N+K FMFP2360
37 H(K)=X(J)-H(K) FMFP2370
C FMFP2380
C TEST LENGTH OF ARGUMENT DIFFERENCE VECTOR AND DIRECTION VECTOR FMFP2390
C IF AT LEAST N ITERATIONS HAVE BEEN EXECUTED. TERMINATE, IF FMFP2400
C BOTH ARE LESS THAN EPS FMFP2410
IER=0 FMFP2420
IF(KOUNT-N)42,39,39 FMFP2430
39 T=0. FMFP2440
Z=0. FMFP2450
DO 40 J=1,N FMFP2460
K=N+J FMFP2470
W=H(K) FMFP2480
K=K+N FMFP2490
T=T+ABS(H(K)) FMFP2500
40 Z=Z+W*H(K) FMFP2510
IF(HNRM-EPS)41,41,42 FMFP2520
41 IF(T-EPS)56,56,42 FMFP2530
C FMFP2540
C TERMINATE, IF NUMBER OF ITERATIONS WOULD EXCEED LIMIT FMFP2550
42 IF(KOUNT-LIMIT)43,50,50 FMFP2560
C FMFP2570
C PREPARE UPDATING OF MATRIX H FMFP2580
43 ALFA=0. FMFP2590
DO 47 J=1,N FMFP2600
K=J+N3 FMFP2610
W=0. FMFP2620
DO 46 L=1,N FMFP2630
KL=N+L FMFP2640
W=W+H(KL)*H(K) FMFP2650
IF(L-J)44,45,45 FMFP2660
44 K=K+N-L FMFP2670
GO TO 46 FMFP2680
45 K=K+1 FMFP2690
46 CONTINUE FMFP2700
K=N+J FMFP2710
ALFA=ALFA+W*H(K) FMFP2720
47 H(J)=W FMFP2730
C FMFP2740
C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF RESULTS FMFP2750
C ARE NOT SATISFACTORY FMFP2760
IF(Z*ALFA)48,1,48 FMFP2770
C FMFP2780
C UPDATE MATRIX H FMFP2790
48 K=N31 FMFP2800
DO 49 L=1,N FMFP2810
KL=N2+L FMFP2820
DO 49 J=L,N FMFP2830
NJ=N2+J FMFP2840
H(K)=H(K)+H(KL)*H(NJ)/Z-H(L)*H(J)/ALFA FMFP2850
49 K=K+1 FMFP2860
GO TO 5 FMFP2870
C END OF ITERATION LOOP FMFP2880
C FMFP2890
C NO CONVERGENCE AFTER LIMIT ITERATIONS FMFP2900
50 IER=1 FMFP2910
RETURN FMFP2920
C FMFP2930
C RESTORE OLD VALUES OF FUNCTION AND ARGUMENTS FMFP2940
51 DO 52 J=1,N FMFP2950
K=N2+J FMFP2960
52 X(J)=H(K) FMFP2970
CALL FUNCT(N,X,F,G) FMFP2980
C FMFP2990
C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DERIVATIVE FMFP3000
C FAILS TO BE SUFFICIENTLY SMALL FMFP3010
IF(GNRM-EPS)55,55,53 FMFP3020
C FMFP3030
C TEST FOR REPEATED FAILURE OF ITERATION FMFP3040
53 IF(IER)56,54,54 FMFP3050
54 IER=-1 FMFP3060
GOTO 1 FMFP3070
55 IER=0 FMFP3080
56 RETURN FMFP3090
END FMFP3100