Trailing-Edge
-
PDP-10 Archives
-
decuslib10-04
-
43,50344/plot3.hlp
There is 1 other file named plot3.hlp in the archive. Click here to see a list.
SUBROUTINE PLTKC (Z1,ZE,Z2,NZ,KX,NX,KY,NY,PL)
SUBROUTINE PLTKP (Z1,ZE,Z2,NZ,KX,NX,KY,NY,PL)
SUBROUTINE PLTKX (Z1,ZE,Z2,NX,NY,PL)
SUBROUTINE PLTKY (Z1,ZE,Z2,NX,NY,PL)
SUBROUTINE PLTLA (I)
SUBROUTINE PLTLH (X,Y,P)
SUBROUTINE PLTMA (X,Y,X0,Y0)
SUBROUTINE PLTMC (X,Y,S)
SUBROUTINE PLTME (X1,Y1,X2,Y2)
SUBROUTINE PLTMS (X,Y,S)
SUBROUTINE PLTMT (X1,Y1,P1,X2,Y2,P2,Q)
SUBROUTINE PLTOR (Z1,ZE,Z2,NZ,KX,NX,KY,NY,PL)
SUBROUTINE PLTPO (T,R,P)
SUBROUTINE PLTPV (Z1,ZE,Z2,NR,NP,PL)
SUBROUTINE PLTQ1 (X,Y,P)
SUBROUTINE PLTQ2 (X,Y,P)
SUBROUTINE PLTQ3 (X,Y,P)
SUBROUTINE PLTQ4 (X,Y,P)
SUBROUTINE PLTRG (X1,X,X2,Y1,Y,Y2,N)
SUBROUTINE PLTRH (X,Y,P)
SUBROUTINE PLTRV (Z1,ZE,Z2,NX,NY,TH,PL)
SUBROUTINE PLTSE (Z1,ZE,Z2,NX,NY,PL)
SUBROUTINE PLTSP (PH,TH,P)
SUBROUTINE PLTSS (Z1,ZE,Z2,NX,MX,NY)
SUBROUTINE PLTSV (FU,NP,NT,S,O,PR,PL)
SUBROUTINE PLTSW (Z1,ZE,Z2,NX,NY,PL)
SUBROUTINE PLTTG (N)
SUBROUTINE PLTTH (X,Y,P)
SUBROUTINE PLTTP (X,Y,Z,P)
SUBROUTINE PLTTR (X,Y,P)
SUBROUTINE PLTTV (Z1,ZE,Z2,N,M,PL)
SUBROUTINE PLTUR (XA,X1,DX,X2,XB,YA,Y1,DY,Y2,YB,W,PL)
SUBROUTINE PVIDS (Z1,ZE,Z2,J1,J2,MX,I1,I2,MY,US,VS,L,M,S,PL)
SUBROUTINE PVIIS (Z1,ZE,Z2,J1,J2,MX,I1,I2,MY,O,S,PL)
SUBROUTINE PVIIV (Z1,ZE,Z2,NX,NY,RO,TI,S,PL)
SUBROUTINE PVISE (Z1,ZE,Z2,NX,NY,S,PL)
SUBROUTINE PVISW (Z1,ZE,Z2,NX,NY,S,PL)
SUBROUTINE PVITV (Z1,ZE,Z2,N,M,S,PL)
SUBROUTINE PVITS (Z1,ZE,Z2,N,M,S,PL)
SUBROUTINE VISBO (X1,T1,B1,M,X0,T0,B0,N0,X,Y,P,N,I,PL)
SUBROUTINE VISCH (X,Y,P,N,I,PL)
SUBROUTINE VISDC (Z1,ZE,Z2,NZ,NX,MX,NY,MY,US,VS,L,PL)
SUBROUTINE VISDO (Z1,S1,S2,Z2,NX,MX,NY,MY,US,VS,L,IS,PL)
SUBROUTINE VISDS (Z1,ZE,Z2,J1,J2,MX,I1,I2,MY,US,VS,L,M,PL)
SUBROUTINE VISES (Z1,ZE,Z2,X1,X2,NX,E1,E2,NE,L,M,PL)
SUBROUTINE VISHH (X0,T0,B0,N0,X,Y,N,I,PL)
SUBROUTINE VISHO (X,Y,N,I,PL)
SUBROUTINE VISIS (Z1,ZE,Z2,J1,J2,MX,I1,I2,MY,O,PL)
FUNCTION VISLI (Z,X,Y,I)
SUBROUTINE VISNH
SUBROUTINE VISNP (PH,TH,JP,IT,NP,NT,O)
SUBROUTINE VISPS (Z1,ZE,Z2,R1,R2,NR,P1,P2,NP,L,M,PL)
SUBROUTINE VISRB (X,Y,J,M,X1,Y1,N1,X2,Y2,N2,S)
SUBROUTINE VISRS (Z1,ZE,Z2,NX,MX,NY,MY,TH,PL)
LOGICAL FUNCTION VISSL (EX,WY,X,Y,I)
SUBROUTINE VISSP (RHO,PHI,R,T,P,O)
SUBROUTINE VISSS (FU,J1,J2,NP,I1,I2,NT,L,M,Q,B,S,O,PR,PL)
SUBROUTINE VISTR (Z1,S1,S2,S3,Z2,NX,MX,NY,MY,US,VS,VD,L,IS,PL)
SUBROUTINE VISTS (Z1,ZE,Z2,N,M,PL)
[08-JUN-75]
APPENDIX 2. "GLOB" ANALYSIS OF THE <PLOT> FILE
SYMBOL DEFINED REFERENCED:
ABS PLTMS,PLTMT,PVIDS,PVIIS,PVITS,VISBO,VISRB,VISRS,VISSL
VISSS
AIMAG CARG
ALOG10 PLTAX
AMAX1 KONSC,KONSK,VISBO,VISRB
AMIN1 KONSC,KONSK,VISBO,VISRB
ATAN2 CARG,VISNP,VISSP
CABS PLTKC
CARG CARG PLTKC
COS PLTCI,PLTEL,PLTHP,PLTPO,PLTSP,VISES,VISPS,VISSP,VISSS
COSD PLTAX,PLTEU,VISRS
COSH PLTEL,VISES
DATE PLTBO,PLTFR
DUMMY. KONSC,KONSK,PLTBV,PLTCI,PLTEV,PLTFI,PLTFM,PLTGA,PLTHP
PLTIG,PLTIL,PLTIV,PLTKB,PLTKC,PLTKP,PLTKX,PLTKY,PLTOR
PLTPV,PLTRV,PLTSE,PLTSV,PLTSW,PLTTV,PLTUR,PVIDS,PVIIS
PVIIV,PVISE,PVISW,PVITV,PVITS,VISBO,VISCH,VISDC,VISDO
VISDS,VISES,VISHH,VISHO,VISIS,VISPS,VISRS,VISSS,VISTR
VISTS
EXP2.2 PLTAX
FLOAT KONSC,KONSK,PLTAX,PLTBV,PLTCI,PLTFI,PLTHP,PLTKB,PLTKC
PLTKP,PLTKX,PLTKY,PLTME,PLTOR,PLTTG,PVIDS,PVIIS,PVITS
VISBO,VISDC,VISDO,VISDS,VISES,VISIS,VISNP,VISPS,VISRS
VISSS,VISTR,VISTS
IABS PVIDS,PVIIS,VISDS,VISIS,VISSS
IFIX PLTAX,PVIIS,VISIS,VISNP
ISIGN PVIDS,PVIIS,VISDS,VISIS,VISSS
KON KONIT KONNC,KONRE,KONSA,KONSC,KONSK,KONXV
KONIT KONIT KONSC,KONSK
KONNC KONNC KONSC,KONSK
KONRE KONRE KONSC,KONSK
KONSA KONSA KONSC,KONSK
KONSC KONSC PLTKP,PLTOR
KONSK KONSK PLTKC
KONXV KONXV KONNC,KONSC,KONSK
KQN KONRE KONSA
MAX0 KONSC,KONSK,PLTKC,PLTKP,PLTOR,PVIDS,PVIIS,VISBO,VISDC
VISDO,VISDS,VISES,VISIS,VISNP,VISPS,VISRB,VISRS,VISSS
VISTR
MIN0 KONSC,KONSK,PLTKC,PLTKP,PLTOR,PVIDS,PVIIS,PVITS,VISBO
VISDC,VISDO,VISDS,VISES,VISIS,VISNP,VISPS,VISRB,VISRS
VISSS,VISTR,VISTS
MOD KONSC,KONSK,VISSS
NUMBER PLTAX
PLOT PLT00,PLTAX,PLTBO,PLTBS,PLTEJ,PLTFR,PLTMC,PLTME,PLTMS
PLOTS PLT00,PLTBS
PLT00 PLT00
PLTAX PLTAX
PLTBH PLTBH
PLTBO PLTBO PLTHP
PLTBS PLTBS
PLTBV PLTBV
PLTCA PLTCA PLTTR
PLTCI PLTCI PLTHP
SYMBOL DEFINED REFERENCED:
PLTEJ PLTEJ PLTSS
PLTEL PLTEL
PLTEU PLTEU PLTIV,PVIIV
PLTEV PLTEV
PLTFI PLTFI
PLTFM PLTFM PLTIG,PLTUR
PLTFR PLTFR PLTSS
PLTGA PLTGA
PLTHP PLTHP
PLTIG PLTIG PLTFI,PLTHP
PLTIL PLTIL PLTKB,PLTKX,PLTKY
PLTIV PLTIV
PLTKB PLTKB
PLTKC PLTKC
PLTKP PLTKP
PLTKX PLTKX
PLTKY PLTKY
PLTLA PLTLA
PLTLH PLTLH PLTSS
PLTMA PLTMA PLTMC,PLTME
PLTMC PLTMC PLTTP
PLTME PLTME PLTMC
PLTMS PLTMS PLTBH,PLTBV,PLTCA,PLTEL,PLTLH,PLTPO,PLTQ1,PLTQ2,PLTQ3
PLTQ4,PLTRG,PLTRH,PLTSP,PLTTH
PLTMT PLTMT PLTMC,PLTMS
PLTOR PLTOR
PLTPO PLTPO
PLTPV PLTPV
PLTQ1 PLTQ1
PLTQ2 PLTQ2
PLTQ3 PLTQ3
PLTQ4 PLTQ4
PLTRG PLTRG
PLTRH PLTRH PLTSS
PLTRV PLTRV
PLTSE PLTSE
PLTSP PLTSP
PLTSS PLTSS
PLTSV PLTSV
PLTSW PLTSW
PLTTG PLTTG
PLTTH PLTTH
PLTTP PLTTP PLTTG
PLTTR PLTTR
PLTTV PLTTV
PLTUR PLTUR
PVIDS PVIDS PVISE,PVISW
PVIIS PVIIS PVIIV
PVIIV PVIIV
SYMBOL DEFINED REFERENCED:
PVISE PVISE
PVISW PVISW
PVITS PVITS PVITV
PVITV PVITV
REAL CARG
SIGN KONNC,KONSC,KONSK,PLTMT,PLTUR,PVIIS,VISBO,VISIS,VISRB
VISSS
SIN PLTCI,PLTEL,PLTHP,PLTPO,PLTSP,VISES,VISPS,VISSP,VISSS
SIND PLTAX,PLTEU,VISRS
SINH PLTEL,VISES
SQRT VISNP,VISSP
SYMBOL PLTAX,PLTBO,PLTFR,PLTLA
SYSJO PLTBO,PLTFR
TANH PLTHP,PLTMA
TIME PLTBO,PLTFR
VIS VISCH VISHO,VISNH
VISBO VISBO VISCH,VISHH,VISHO
VISCH VISCH PVIDS,PVIIS,PVITS,VISSS
VISDC VISDC
VISDO VISDO
VISDS VISDS PLTSE,PLTSS,PLTSW
VISES VISES PLTEV
VISHH VISHH VISDC,VISDO,VISTR
VISHO VISHO VISDS,VISES,VISIS,VISPS,VISRS,VISTS
VISIS VISIS PLTIV
VISLI VISLI VISBO,VISRB
VISNH VISNH PLTEV,PLTIV,PLTPV,PLTRV,PLTSE,PLTSS,PLTSV,PLTSW,PLTTV
PVIIV,PVISE,PVISW,PVITV
VISNP VISNP PLTSV,VISSS
VISPS VISPS PLTPV
VISRB VISRB VISDC,VISDO,VISTR
VISRS VISRS PLTRV
VISSL VISSL VISBO,VISRB
VISSP VISSP
VISSS VISSS PLTSV
VISTR VISTR
VISTS VISTS PLTTV
[08-JUN-75]
APPENDIX 3. ABSTRACTS OF THE <PLOT> DEMONSTRATION PROGRAMS
C [DEMO1]
C [04-JUN-74]
C [DEMO2]
C DEMONSTRATION FOR THE PROGRAMS PLTSE, PLTSS, PLTSW, WHICH GIVE
C PERSPECTIVE VIEWS OF FUNCTIONS STORED IN A RECTANGULAR ARRAY.
C THE DEMONSTRATION SUPERPOSES AN ELLIPSOIDAL AND A HYPERBOLIC
C MOUND, BOTH ON TOP OF A SADDLE.
C [20-NOV-74]
C [DEMO3]
C FLAT-BOTTOM CRATER ON HILL
C [16-NOV-74]
C [DEMO4]
C DEMONSTRATION FOR THE PROGRAM PLTPV, SHOWING A PERSPECTIVE
C VIEW OF FUNCTIONS THAT ARE DEFINED IN POLAR COORDINATES.
C [04-JUN-74]
C [DEMO5]
C DEMONSTRATION FOR TRIANGULAR VIEW
C [15-MAY-74]
C [DEMO6]
C DEMONSTRATION FOR THE PROGRAM PLTEV, WHICH GRAPHS FUNCTIONS
C DEFINED OVER ELLIPTICAL COORDINATES.
C [10-NOV-74]
C [DEMO7]
C DEMONSTRATION FOR THE EMBEDDING OF CONTOUR LINES INTO THE VIEW
C OF A SURFACE.
C [13-APR-74]
C [DEM08]
C DEMONSTRATION FOR THE GRAPHING OF
C A PAIR OF SURFACES, CONSISTING OF
C SOME GAUSSIAN VARIANTS.
C [14-APR-74]
C [DEM09]
C DEMONSTRATION FOR THE GRAPHING
C OF A PAIR OF SURFACES, MADE UP
C OUT OF PLANES AND CONES.
C [13-APR-74]
C [DEM10]
C DEMONSTRATION FOR THE GRAPHING OF
C A TRIPLE OF SURFACES, MADE UP OUT
C OF PLANES AND CONES.
C [14-APR-74]
C [DEM11]
C DEMONSTRATION FOR THE GRAPHING OF TRIPLES
C OF SURFACES, CONSISTING IN THIS CASE OF
C SINUSOIDAL FUNCTIONS MODULATED BY A GAUSSIAN
C AMPLITUDE, PLUS A PARABOLOID. THE VERTICAL
C SEPARATION OPTION SHOULD REVEAL THE DETAILS
C OF THEIR MUTUAL INTERSECTIONS.
C [14-APR-74]
C [DEM12]
C DEMONSTRATION FOR PLTRV WHICH GIVES A PERSPECTIVE VIEW
C OF A FUNCTION STORED IN A RECTANGULAR ARRAY. THE
C DEMONSTRATION SUPERPOSES AN ELLIPSOIDAL AND A HYPERBOLIC
C MOUND, BOTH ON TOP OF A SADDLE.
C [18-MAY-74]
SUBROUTINE DEM13
C [DEM13]
C DEMONSTRATION FOR THE PROGRAM PLTSV, WHICH SHOWS A PERSPECTIVE
C VIEW OF FUNCTIONS DEFINED OVER A SPHERE.
C [02-JUN-74]
SUBROUTINE DEM14
C [DEM14]
C DEMONSTRATION FOR THE PROGRAM PLTSV, CONSISTING IN DRAWING
C A PERSPECTIVE STEREOPAIR OF A FUNCTION DEFINED OVER A SPHERE,
C EXHIBITING THE LINES OF CONSTANT LATITUDE AND LONGITUDE.
C [02-JUNE-74]
SUBROUTINE DEM15
C [DEM15]
C DEMONSTRATION FOR THE PROGRAM PLTHV, WHICH SHOWS A PERSPECTIVE
C VIEW OF TWO FUNCTIONS DEFINED OVER A HEMISPHERE.
C [27-MAY-74]
SUBROUTINE DEM16
C [DEM16]
C CHRYSANTHEMUM
C [22-MAY-74]
SUBROUTINE DEM17
C [DEM17]
C STRAWBERRY
C DEMONSTRATION FOR THE PROGRAM PLTOV, WHICH CALCULATES
C THE OUTER BOUND OF TWO FUNCTIONS DEFINED OVER A SPHERICAL
C SURFACE. THE DEMONSTRATION SHOWS A "STRAWBERRY" SURROUNDED
C BY A SPARSE SPHERE.
C [22-MAY-74]
C [DEM18]
C PUFF-FISH
C DEMONSTRATION FOR THE PROGRAM PLTOV, WHICH CALCULATES
C THE OUTER BOUND OF TWO FUNCTIONS DEFINED OVER A SPHERICAL
C SURFACE. THE DEMONSTRATION SHOWS A SPINY FIGURE WHICH HAS
C BEEN CUT OFF AT A CERTAIN RADIUS. THE INNER AND OUTER PARTS
C ARE SHOWN SIDE BY SIDE IN TWO SEPARATE FIGURES.
C [23-MAY-74]
C [DEM19]
C TETRAHEDRAL WAVE FUNCTIONS
C DEMONSTRATION TO EXERCISE THE PROGRAMS PLTSV, D19SP, VISSS, AND
C OTHERS WHICH MIGHT USE SPHERICAL POLAR COORDINATES. THIS INCLUDES
C HIDDEN SURFACE, CONTOURING AND SHADING OPTIONS, AS WELL AS SEVERAL
C MULTICOLOR TECHNIQUES. THE SURFACE EMPLOYED IS A RATHER SIMPLE
C APPROXIMATION TO THE TETRAHEDRAL BONDING FUNCTIONS, AND THEREFORE
C IS ONE WHICH HAS LARGE LOBES IN THE TETRAHEDRAL DIRECTIONS. THE
C VARIABLE L SELECTS ONE OF THE FOLLOWING OPTIONS.
C L=1 ORDINARY PERSPECTIVE AND CONTOURS
C L=2 CHECKERBOARD OF LATITUDE AND LONGITUDE
C L=3 CONTOUR BANDS
C [21-MAY-75]
SUBROUTINE DEM20
C [DEM20]
C DEMONSTRATION FOR THE PROGRAM PLTSV, WHICH SHOWS A PERSPECTIVE
C VIEW OF FUNCTIONS DEFINED OVER A SPHERE. A GRID OF SPINES IS
C PLACED ON THE FIGURE AS AN AID TO LOCATING CONTOURS; EACH SPINE
C IS ROUNDED UP TO THE NEXT TENTH.
C [27-MAY-74]
SUBROUTINE DEM21
C [DEM21]
C DEMONSTRATION FOR THE PROGRAM PLTSV, WHICH SHOWS A PERSPECTIVE
C VIEW OF FUNCTIONS DEFINED OVER A SPHERE.
C [27-MAY-74]
SUBROUTINE DEM22
C [DEM22]
C PLANETARY COPPER MINE
C DEMONSTRATION FOR THE PROGRAM PLTSV, WHICH SHOWS A PERSPECTIVE
C VIEW OF FUNCTIONS DEFINED OVER A SPHERE. QUANTIFICATION IS USED
C TO INDICATE THE VARIOUS RADIAL CONTOUR LEVELS OF THE FUNCTION.
C [02-JUN-74]
SUBROUTINE DEM23
C [DEM23]
C CALCULATION OF THE TILT OF THE ELEMENTARY RECTANGLES
C AS A FUNCTION OF THETA AND PHI FOR USE IN CHOOSING
C THE DIAGONAL SEQUENCE TO BE FOLLOWED IN THE SPHERICAL
C SEQUENCE ROUTINES.
C [28-MAY-74]
SUBROUTINE DEM24
C [DEM24]
C [03-JUN-74]
SUBROUTINE DEM25
C [DEM25]
C [29-MAY-74]
C [DEM26]
C DEMONSTRATION OF TWO PARTICLES IN A COULOMB WELL
C [18-MAY-74]
C [DEM27]
C DEMONSTRATION OF TWO PARTICLES IN AN EXPONENTIAL WELL
C [18-MAY-74]
C [DEM28]
C DEMONSTRATION OF THE POTENTIAL FELT BY TWO PARTICLES IN A GAUSSIAN
C WELL. THE SURFACE ARISES FROM THE USE OF HYPERSPHERICAL HARMONICS
C IN QUANTUM MECHANICS. HERE IT IS USED TO ILLUSTRATE A TECHNIQUE
C OF SKETCHING OUT A COARSE SURFACE INTO WHICH IS INSERTED A DENSER
C REGION OF SPECIAL INTEREST. THE DETAIL WHICH IS DESIRED IS THE
C SHAPE OF THE BOTTOM OF THE TROUGHS CROSSING AT THE CENTER OF THE
C DRAWING.
C [06-OCT-74]
C [DEM29]
C DEMONSTRATION OF TWO PARTICLES IN A GAUSSIAN WELL
C [14-NOV-74]
C [DEM30]
C DEMONSTRATION FOR THE REPRESENTATION OF A FUNCTION OF A COMPLEX
C VARIABLE. THE COMPLEX CONTOURING PROGRAM PLTKC AUTOMATICALLY
C CONTOURS BOTH THE MODULUS AND THE ARGUMENT OF A COMPLEX FUNCTION,
C WHICH IT RECEIVES IN THE FORM OF A COMPLEX ARRAY.
C [26-MAY-75]
C [DEM31]
C DEMONSTRATION FOR THE REPRESENTATION OF A FUNCTION OF A COMPLEX
C VARIABLE. THE MODULUS OF THE FUNCTION CAN BE SHOWN AS A SURFACE IN
C THREE DIMENSIONS, BUT THE PHASE IS LOST IN THE PROCESS. BY SHOWING
C CONTOURS OF CONSTANT PHASE THE LOST INFORMATION IS REGAINED, BUT
C IT IS HARD TO SHOW CONTOURS ON A SURFACE ALREADY DENSELY POPULATED
C BY LINEAR ARCS. BY SHOWING REGIONS OF DIFFERENT PHASE IN DIFFERENT
C COLORS THE INFORMATION IS PRESENTED IN A READILY PERCEIVABLE FORM.
C [26-MAY-75]
C [DEM32]
C DEMONSTRATION FOR THE INCLINED VIEW PROGRAM PLTIV. THE SURFACE
C REPRESENTED IS THE SAME ONE USED IN DEM30 AND DEM31, WHICH IS THE
C ABSOLUTE VALUE OF A FUNCTION OF A COMPLEX VARIABLE WITH FIVE POLES
C LOCATED AT THE VERTICES OF A REGULAR HEXAGON. TWO OPTIONS SHOW
C SHOW DIFFERENT STAGES OR ROTATION ABOUT A VERTICAL AXIS (L=1) OR
C DIFFERENT DEGREES OF TILT ABOUT A HORIZONTAL AXIS (L=2).
C [30-MAY-75]
C [DEM33]
C DEMONSTRATION OF A COLOR COMPOSITE
C [18-DEC-74]
C [DEM34]
C DEMONSTRATION FOR THE ORTHOGRAPHIC RELIEF PROGRAM. THE SURFACE
C SHOWN IS RELATED TO THE SURFACE OF DEM30, DEM31, AND DEM33, BY THE
C SUBTRACTION OF THE VARIABLE Z. THE OBJECTIVE IS TO LOCATE POINTS
C WHERE THAT SURFACE EQUALS Z; ORTHOGRAPHIC RELIEF WILL SOMETIMES
C AID TO DISTINGUISH DEPRESSIONS IN A SURFACE FROM PROTRUBERANCES.
C OPTION L ALLOWS GENERATION OF AN ORTHOGRAPHIC RELIEF (L=2) OR AN
C ORDINARY CONTOUR (L=1). IF THESE ARE DONE IN TWO DIFFERENT COLORS
C AND SUPERPOSED, THEY WILL SOMETIMES ENHANCE ONE ANOTHER.
C [08-JUN-75]
C [DEM35]
C DEMONSTRATION OF BIRDSEYE VIEW
C [18-DEC-74]
C [DEM38]
C DEMONSTRATION PROGRAM FOR PLTRI. THE PRINCIPAL POINT OF INTEREST
C IN THIS DEMONSTRATION IS THE FACT THAT VIRTUALLY ANY COORDINATE
C SYSTEM MAY BE USED FOR PLOTTING A GRAPH, AND THAT THE AXIS DRAWING
C OPTION WILL FAITHFULLY DRAW THE COORDINATE AXES OF THE SYSTEM IN
C USE. BY SELECTING OPTIONS L=1,2,3,4,5, THE FIVE COORDINATE SYSTEMS
C CARTESIAN, POLAR, ELLIPTIC, SPHERICAL POLAR, OR TRIANGULAR, MAY BE
C TESTED.
C [07-JUN-75]