Trailing-Edge
-
PDP-10 Archives
-
decuslib20-05
-
decus/20-0137/banova/banova.for
There is 1 other file named banova.for in the archive. Click here to see a list.
C WESTERN MICHIGAN UNIVERSITY
C BANOVA.F4 (FILENAME ON LIBRARY DECTAPE)
C BANOVA, 1.9.1 (CALLING NAME, SUBLST #)
C BALANCED ANALYSIS OF VARIANCE
C ADAPTED FROM DECUS(NO. 10-101, IBM-SSP)
C MODIFIED BY SAM ANEMA AND R.R. BARR III
C LIBRARY DECTAPE PROGRAMS USED: USAGE.MAC
C FORWMU PROGS USED: TTYPTY, PRINTS, DEVCHG, EXISTS
C APLIB PROGS. USED: FISHER, GETFOR, IO
C INTERNAL SUBR. USED: AVCAL, AVDAT, MEANQ, SETUP
C ABOVE COMMENTS AND RIGHT ADJUSTED COMMENTS PUT IN BY WG
C
DIMENSION F(63)
DIMENSION ID(16),LFMT(96)
C---------------SEE COMMENTS FOR SUBR. AVCAL RELATING TO X(3000).
DIMENSION X(3000)
DIMENSION HEAD(6),LEVEL(6),ISTEP(6),KOUNT(6),LASTS(6)
DIMENSION SUMSQ(63),NDF(63),SMEAN(63)
DIMENSION FMT(15)
1 FORMAT(A4,A2,I2,A4,3X,11(A1,I4)/(A1,I4,A1,I4,A1,
1I4,A1,I4,A1,I4))
2 FORMAT(' ','ANALYSIS OF VARIANCE............',A4,A2//)
3 FORMAT(' ','LEVELS OF FACTORS'/(3X,A1,7X,I4))
4 FORMAT(//' ','GRAND MEAN',F20.5////)
5 FORMAT(' ','SOURCE OF',18X,'SUMS OF',10X,'DEGREES OF',9X,
1'MEAN'/' VARIATION',18X,'SQUARES',11X,'FREEDOM',10X,'SQUARES'/)
6 FORMAT(' ',12A1,F20.5,10X,I6,F20.5)
7 FORMAT(' ','TOTAL',7X,F20.5,10X,I6)
8 FORMAT(12F6.0)
IOUT=3
INP=2
NOUTD=-1
IND=-4
WRITE(NOUTD,203)
203 FORMAT(//20X,'WMU'/5X,'BALANCED ANALYSIS OF VARIANCE'/)
C CALL USAGE('BANOVA')
C---------------TTYPTY RETURNS ZERO - TTY JOB, MINUS ONE - BATCH JOB
CALL TTYPTY(ICODE)
C---------------NDV1, NDV2 ARE RETURNED. OTHER ARGS ARE INPUT. 1 CAUSES
C--------------- OUTPUT? TO PRINT, 0 CAUSES INPUT? TO PRINT. ICODE
C--------------- COMES FROM CALL TTYPTY.
CALL IO(IOUT,NDV1,NOUTD,IND,1,ICODE)
201 CALL IO(INP,NDV2,NOUTD,IND,0,ICODE)
C---------------LFMT, ISTD ARE RETURNED. OTHER ARGS ARE INPUT. 96=NO.
C--------------- OF FMT. WORDS FOR OBJ. TIME FORMAT (6 LINES)
C--------------- 2 MEANS F - TYPE ONLY FOR FORMAT
CALL GETFOR(NOUTD,IND,LFMT,ISTD,96,2)
C---------------USER CHOSE STANDARD FORMAT IF ISTD=1
IF(ISTD.EQ.1)LFMT(1)='(10F)'
BLANK=' '
PR=' '
PR1=' '
WRITE(NOUTD,220)
220 FORMAT(' ','ENTER NUMBER OF FACTORS.'/)
READ(IND,230)K
230 FORMAT(I)
WRITE(NOUTD,240)
240 FORMAT(' ','ENTER NAMES OF FACTORS. '
1,'(SINGLE ALPHAMERIC CHARACTERS)'/)
READ(IND,250)(HEAD(I),I=1,K)
250 FORMAT(10(A1,1X))
WRITE(NOUTD,260)
260 FORMAT(' ','ENTER NUMBER OF LEVELS FOR EACH FACTOR.'/)
READ(IND,270)(LEVEL(I),I=1,K)
270 FORMAT(10I)
N=LEVEL(1)
DO 280 I=2,K
280 N=N*LEVEL(I)
LINES=IFIX(FLOAT(N)/10.0+.999)
1002 WRITE(NOUTD,1003)
1003 FORMAT(' ','ENTER IDENTIFICATION'/)
READ(IND,1004)(ID(I),I=1,16)
1004 FORMAT(16A5)
IDC=INP
IF(NDV2.NE.'TTY')GO TO 739
IF(ISTD.EQ.1)WRITE(NOUTD,740)
740 FORMAT(' ENTER DATA (AT MOST 10 PER LINE)'/)
IF(ISTD.NE.1)WRITE(NOUTD,330)
CALL SETUP(LINES,NOUTD,IND)
IDC=1
CALL IFILE(1,'JOB')
GO TO 337
739 WRITE(NOUTD,741)
741 FORMAT(' YOUR DATA IS BEING READ.'/)
330 FORMAT(' ','ENTER DATA.'/)
337 READ(IDC,LFMT)(X(I),I=1,N)
210 WRITE(IOUT,2)PR,PR1
WRITE(IOUT,1008)(ID(I),I=1,16)
1008 FORMAT(' ',16A5)
WRITE(IOUT,3)(HEAD(I),LEVEL(I),I=1,K)
WRITE(IOUT,401)
401 FORMAT(///' MEANS ON LEVELS'//' FACTOR',5X,'LEVEL',9X,'MEAN'/)
KA=1
KF=N
DO 490 I=1,K
IF(I.EQ.1)GO TO 491
KA=KA*LEVEL(I-1)
491 KF=KF/LEVEL(I)
XNUM=FLOAT(N/LEVEL(I))
DO 480 J=1,LEVEL(I)
SUM=0.0
DO 481 KK=1,KF
KSTART=(KK-1)*LEVEL(I)*KA+(J-1)*KA+1
KLAST=KSTART+KA-1
DO 482 KL=KSTART,KLAST
482 SUM=SUM+X(KL)
481 CONTINUE
SUM=SUM/XNUM
WRITE(IOUT,483)HEAD(I),J,SUM
483 FORMAT(4X,A1,6X,I4,F17.4)
480 CONTINUE
490 CONTINUE
CALL AVDAT (K,LEVEL,N,X,L,ISTEP,KOUNT)
CALL AVCAL (K,LEVEL,X,L,ISTEP,LASTS)
CALL MEANQ (K,LEVEL,X,GMEAN,SUMSQ,NDF,SMEAN,ISTEP,KOUNT,LASTS)
WRITE(IOUT,4)GMEAN
WRITE(IOUT,5)
LL=(2**K)-1
ISTEP(1)=1
DO 105 I=2,K
105 ISTEP(I)=0
DO 110 I=1,15
110 FMT(I)=BLANK
NN=0
SUM=0.
120 NN=NN+1
L=0
DO 140 I=1,K
FMT(I)=BLANK
IF(ISTEP(I))130,140,130
130 L=L+1
FMT(L)=HEAD(I)
140 CONTINUE
WRITE(IOUT,6)(FMT(I),I=1,12),SUMSQ(NN),NDF(NN),SMEAN(NN)
SUM=SUM+SUMSQ(NN)
IF(NN-LL)145,170,170
145 DO 160 I=1,K
IF(ISTEP(I))147,150,147
147 ISTEP(I)=0
GO TO 160
150 ISTEP(I)=1
GO TO 120
160 CONTINUE
170 N=N-1
WRITE(IOUT,7)SUM,N
WRITE(NOUTD,1009)
1009 FORMAT(///' WOULD YOU LIKE TO POOL OVER THE LAST FACTOR?'/)
READ(IND,1010)IP
IF(IP.NE.'YES')GO TO 201
1010 FORMAT(A3)
19 NST=2**(K-1)
ISTEP(1)=1
DO 40 I=2,K
40 ISTEP(I)=0
ERROR=0.
NDFT=0
NN=0
DO 20 I=NST,LL
ERROR=ERROR+SUMSQ(I)
20 NDFT=NDFT+NDF(I)
SMEAN(NST)=ERROR/FLOAT(NDFT)
SUMSQ(NST)=ERROR
DO 27 I=1,NST-1
27 F(I)=SMEAN(I)/SMEAN(NST)
NDF(NST)=NDFT
WRITE(IOUT,51)
28 NN=NN+1
L=0
DO 23 I=1,K
FMT(I)=BLANK
IF(ISTEP(I))22,23,22
22 L=L+1
FMT(L)=HEAD(I)
23 CONTINUE
FPRB=FISHER(NDF(NN),NDF(NST),F(NN))
WRITE(IOUT,29)(FMT(I),I=1,8),SUMSQ(NN),NDF(NN),SMEAN(NN),
1F(NN),FPRB
IF(NN-(NST-1))31,32,32
31 DO 33 I=1,K
IF(ISTEP(I))34,35,34
34 ISTEP(I)=0
GO TO 33
35 ISTEP(I)=1
GO TO 28
33 CONTINUE
32 WRITE(IOUT,38)SUMSQ(NST),NDF(NST),SMEAN(NST)
WRITE(IOUT,39)SUM,N
WRITE(NOUTD,204)
204 FORMAT(///)
GO TO 201
51 FORMAT(////' ANALYSIS OF VARIANCE WITH LAST FACTOR',
1' POOLED AND CALLED ERROR'//' SOURCE OF',7X,'SUMS OF',
13X,'DEGREES OF',6X,'MEAN',9X,'F',9X,'F'/' VARIATION',7X,'SQUARES',
15X,'FREEDOM',6X,'SQUARES',4X,'VALUES',5X,'PROB'/)
29 FORMAT(' ',8A1,F17.5,I9,F15.5,F10.3,F10.5)
38 FORMAT(' ERROR ',F17.5,I9,F15.5)
39 FORMAT(' TOTAL ',F17.5,I9)
END
C
C ..................................................................
C
C SUBROUTINE AVCAL
C
C PURPOSE
C PERFORM THE CALCULUS OF A FACTORIAL EXPERIMENT USING
C OPERATOR SIGMA AND OPERATOR DELTA. THIS SUBROUTINE IS
C PRECEDED BY SUBROUTINE ADVAT AND FOLLOWED BY SUBROUTINE
C MEANQ IN THE PERFORMANCE OF ANALYSIS OF VARIANCE FOR A
C COMPLETE FACTORIAL DESIGN.
C
C USAGE
C CALL AVCAL (K,LEVEL,X,L,ISTEP,LASTS)
C
C DESCRIPTION OF PARAMETERS
C K - NUMBER OF VARIABLES (FACTORS). K MUST BE .GT. ONE.
C LEVEL - INPUT VECTOR OF LENGTH K CONTAINING LEVELS (CATE-
C GORIES) WITHIN EACH VARIABLE.
C X - INPUT VECTOR CONTAINING DATA. DATA HAVE BEEN PLACED
C IN VECTOR X BY SUBROUTINE AVDAT. THE LENGTH OF X
C IS (LEVEL(1)+1)*(LEVEL(2)+1)*...*(LEVEL(K)+1).
C L - THE POSITION IN VECTOR X WHERE THE LAST INPUT DATA
C IS LOCATED. L HAS BEEN CALCULATED BY SUBROUTINE
C AVDAT.
C ISTEP - INPUT VECTOR OF LENGTH K CONTAINING STORAGE CONTROL
C STEPS WHICH HAVE BEEN CALCULATED BY SUBROUTINE
C AVDAT.
C LASTS - WORKING VECTOR OF LENGTH K.
C
C REMARKS
C THIS SUBROUTINE MUST FOLLOW SUBROUTINE AVDAT.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE
C
C METHOD
C THE METHOD IS BASED ON THE TECHNIQUE DISCUSSED BY H. O.
C HARTLEY IN 'MATHEMATICAL METHODS FOR DIGITAL COMPUTERS',
C EDITED BY A. RALSTON AND H. WILF, JOHN WILEY AND SONS,
C 1962, CHAPTER 20.
C
C ..................................................................
C
C---------------K, LEVEL, X, L, ISTEP ARE INPUT. LASTS IS
C--------------- OUTPUT. X IS MODIFIED.
SUBROUTINE AVCAL (K,LEVEL,X,L,ISTEP,LASTS)
DIMENSION LEVEL(1),X(1),ISTEP(1),LASTS(1)
C
C ...............................................................
C
C IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE
C C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION
C STATEMENT WHICH FOLLOWS.
C
C DOUBLE PRECISION X,SUM
C
C THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS
C APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS
C ROUTINE.
C
C ...............................................................
C
C CALCULATE THE LAST DATA POSITION OF EACH FACTOR
C
LASTS(1)=L+1
DO 145 I=2,K
145 LASTS(I)=LASTS(I-1)+ISTEP(I)
C
C PERFORM CALCULUS OF OPERATION
C
150 DO 175 I=1,K
L=1
LL=1
SUM=0.0
NN=LEVEL(I)
FN=NN
INCRE=ISTEP(I)
LAST=LASTS(I)
C
C SIGMA OPERATION
C
155 DO 160 J=1,NN
SUM=SUM+X(L)
160 L=L+INCRE
X(L)=SUM
C
C DELTA OPERATION
C
DO 165 J=1,NN
X(LL)=FN*X(LL)-SUM
165 LL=LL+INCRE
SUM=0.0
IF(L-LAST) 167, 175, 175
167 IF(L-LAST+INCRE) 168, 168, 170
168 L=L+INCRE
LL=LL+INCRE
GO TO 155
170 L=L+INCRE+1-LAST
LL=LL+INCRE+1-LAST
GO TO 155
175 CONTINUE
RETURN
END
C
C ..................................................................
C
C SUBROUTINE AVDAT
C
C PURPOSE
C PLACE DATA FOR ANALYSIS OF VARIANCE IN PROPERLY DISTRIBUTED
C POSITIONS OF STORAGE. THIS SUBROUTINE IS NORMALLY FOLLOWED
C BY CALLS TO AVCAL AND MEANQ SUBROUTINES IN THE PERFORMANCE
C OF ANALYSIS OF VARIANCE FOR A COMPLETE FACTORIAL DESIGN.
C
C USAGE
C CALL AVDAT (K,LEVEL,N,X,L,ISTEP,KOUNT)
C
C DESCRIPTION OF PARAMETERS
C K - NUMBER OF VARIABLES (FACTORS). K MUST BE .GT. ONE.
C LEVEL - INPUT VECTOR OF LENGTH K CONTAINING LEVELS (CATE-
C GORIES) WITHIN EACH VARIABLE.
C N - TOTAL NUMBER OF DATA POINTS READ IN.
C X - WHEN THE SUBROUTINE IS CALLED, THIS VECTOR CONTAINS
C DATA IN LOCATIONS X(1) THROUGH X(N). UPON RETURNING
C TO THE CALLING ROUTINE, THE VECTOR CONTAINS THE DATA
C IN PROPERLY REDISTRIBUTED LOCATIONS OF VECTOR X.
C THE LENGTH OF VECTOR X IS CALCULATED BY (1) ADDING
C ONE TO EACH LEVEL OF VARIABLE AND (2) OBTAINING THE
C CUMULATIVE PRODUCT OF ALL LEVELS. (THE LENGTH OF
C X = (LEVEL(1)+1)*(LEVEL(2)+1)*...*(LEVEL(K)+1).)
C L - OUTPUT VARIABLE CONTAINING THE POSITION IN VECTOR X
C WHERE THE LAST INPUT DATA IS STORED.
C ISTEP - OUTPUT VECTOR OF LENGTH K CONTAINING CONTROL STEPS
C WHICH ARE USED TO LOCATE DATA IN PROPER POSITIONS
C OF VECTOR X.
C KOUNT - WORKING VECTOR OF LENGTH K.
C REMARKS
C INPUT DATA MUST BE ARRANGED IN THE FOLLOWING MANNER.
C CONSIDER THE 3-VARIABLE ANALYSIS OF VARIANCE DESIGN, WHERE
C ONE VARIABLE HAS 3 LEVELS AND THE OTHER TWO VARIABLES HAVE
C 2 LEVELS. THE DATA MAY BE REPRESENTED IN THE FORM X(I,J,K),
C I=1,2,3 J=1,2 K=1,2. IN ARRANGING DATA, THE INNER
C SUBSCRIPT, NAMELY I, CHANGES FIRST. WHEN I=3, THE NEXT
C INNER SUBSCRIPT, J, CHANGES AND SO ON UNTIL I=3, J=2, AND
C K=2.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE
C
C METHOD
C THE METHOD IS BASED ON THE TECHNIQUE DISCUSSED BY H. O.
C HARTLEY IN 'MATHEMATICAL METHODS FOR DIGITAL COMPUTERS',
C EDITED BY A. RALSTON AND H. WILF, JOHN WILEY AND SONS,
C 1962, CHAPTER 20.
C
C ..................................................................
C
C---------------K, N, X, ISTEP ARE INPUT. L, KOUNT ARE OUTPUT.
C--------------- X, ISTEP ARE MODIFIED.
SUBROUTINE AVDAT (K,LEVEL,N,X,L,ISTEP,KOUNT)
DIMENSION LEVEL(1),X(1),ISTEP(1),KOUNT(1)
C
C ...............................................................
C
C IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE
C C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION
C STATEMENT WHICH FOLLOWS.
C
C DOUBLE PRECISION X
C
C THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS
C APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS
C ROUTINE.
C
C ...............................................................
C
C CALCULATE TOTAL DATA AREA REQUIRED
C
M=LEVEL(1)+1
DO 105 I=2,K
105 M=M*(LEVEL(I)+1)
C
C MOVE DATA TO THE UPPER PART OF THE ARRAY X
C FOR THE PURPOSE OF REARRANGEMENT
C
N1=M+1
N2=N+1
DO 107 I=1,N
N1=N1-1
N2=N2-1
107 X(N1)=X(N2)
C
C CALCULATE MULTIPLIERS TO BE USED IN FINDING STORAGE LOCATIONS FOR
C INPUT DATA
C
ISTEP(1)=1
DO 110 I=2,K
110 ISTEP(I)=ISTEP(I-1)*(LEVEL(I-1)+1)
DO 115 I=1,K
115 KOUNT(I)=1
C
C PLACE DATA IN PROPER LOCATIONS
C
N1=N1-1
DO 135 I=1,N
L=KOUNT(1)
DO 120 J=2,K
120 L=L+ISTEP(J)*(KOUNT(J)-1)
N1=N1+1
X(L)=X(N1)
DO 130 J=1,K
IF(KOUNT(J)-LEVEL(J)) 124, 125, 124
124 KOUNT(J)=KOUNT(J)+1
GO TO 135
125 KOUNT(J)=1
130 CONTINUE
135 CONTINUE
RETURN
END
C
C ..................................................................
C
C SUBROUTINE MEANQ
C
C PURPOSE
C COMPUTE SUM OF SQUARES, DEGREES OF FREEDOM, AND MEAN SQUARE
C USING THE MEAN SQUARE OPERATOR. THIS SUBROUTINE NORMALLY
C FOLLOWS CALLS TO AVDAT AND AVCAL SUBROUTINES IN THE PER-
C FORMANCE OF ANALYSIS OF VARIANCE FOR A COMPLETE FACTORIAL
C DESIGN.
C
C USAGE
C CALL MEANQ (K,LEVEL,X,GMEAN,SUMSQ,NDF,SMEAN,MSTEP,KOUNT,
C LASTS)
C
C DESCRIPTION OF PARAMETERS
C K - NUMBER OF VARIABLES (FACTORS). K MUST BE .GT. ONE.
C LEVEL - INPUT VECTOR OF LENGTH K CONTAINING LEVELS (CATE-
C GORIES) WITHIN EACH VARIABLE.
C X - INPUT VECTOR CONTAINING THE RESULT OF THE SIGMA AND
C DELTA OPERATORS. THE LENGTH OF X IS
C (LEVEL(1)+1)*(LEVEL(2)+1)*...*(LEVEL(K)+1).
C GMEAN - OUTPUT VARIABLE CONTAINING GRAND MEAN.
C SUMSQ - OUTPUT VECTOR CONTAINING SUMS OF SQUARES. THE
C LENGTH OF SUMSQ IS 2 TO THE K-TH POWER MINUS ONE,
C (2**K)-1.
C NDF - OUTPUT VECTOR CONTAINING DEGREES OF FREEDOM. THE
C LENGTH OF NDF IS 2 TO THE K-TH POWER MINUS ONE,
C (2**K)-1.
C SMEAN - OUTPUT VECTOR CONTAINING MEAN SQUARES. THE
C LENGTH OF SMEAN IS 2 TO THE K-TH POWER MINUS ONE,
C (2**K)-1.
C MSTEP - WORKING VECTOR OF LENGTH K.
C KOUNT - WORKING VECTOR OF LENGTH K.
C LASTS - WORKING VECTOR OF LENGTH K.
C
C REMARKS
C THIS SUBROUTINE MUST FOLLOW SUBROUTINE AVCAL
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE
C
C METHOD
C THE METHOD IS BASED ON THE TECHNIQUE DISCUSSED BY H. O.
C HARTLEY IN 'MATHEMATICAL METHODS FOR DIGITAL COMPUTERS',
C EDITED BY A. RALSTON AND H. WILF, JOHN WILEY AND SONS,
C 1962, CHAPTER 20.
C
C ..................................................................
C
C---------------K, LEVEL, X ARE INPUT. GMEAN, SUMSQ, NDF, SMEAN,
C--------------- KOUNT, LASTS, MSTEP ARE OUTPUT.
SUBROUTINE MEANQ (K,LEVEL,X,GMEAN,SUMSQ,NDF,SMEAN,MSTEP,KOUNT,
1 LASTS)
DIMENSION LEVEL(1),X(1),SUMSQ(1),NDF(1),SMEAN(1),MSTEP(1),
1 KOUNT(1),LASTS(1)
C
C ...............................................................
C
C IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE
C C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION
C STATEMENT WHICH FOLLOWS.
C
C DOUBLE PRECISION X,GMEAN,SUMSQ,SMEAN,FN1
C
C THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS
C APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS
C ROUTINE.
C
C ...............................................................
C
C CALCULATE TOTAL NUMBER OF DATA
C
N=LEVEL(1)
DO 150 I=2,K
150 N=N*LEVEL(I)
C
C SET UP CONTROL FOR MEAN SQUARE OPERATOR
C
LASTS(1)=LEVEL(1)
DO 178 I=2,K
178 LASTS(I)=LEVEL(I)+1
NN=1
C
C CLEAR THE AREA TO STORE SUMS OF SQUARES
C
LL=(2**K)-1
MSTEP(1)=1
DO 180 I=2,K
180 MSTEP(I)=MSTEP(I-1)*2
DO 185 I=1,LL
185 SUMSQ(I)=0.0
C
C PERFORM MEAN SQUARE OPERATOR
C
DO 190 I=1,K
190 KOUNT(I)=0
200 L=0
DO 260 I=1,K
IF(KOUNT(I)-LASTS(I)) 210, 250, 210
210 IF(L) 220, 220, 240
220 KOUNT(I)=KOUNT(I)+1
IF(KOUNT(I)-LEVEL(I)) 230, 230, 250
230 L=L+MSTEP(I)
GO TO 260
240 IF(KOUNT(I)-LEVEL(I)) 230, 260, 230
250 KOUNT(I)=0
260 CONTINUE
IF(L) 285, 285, 270
270 SUMSQ(L)=SUMSQ(L)+X(NN)*X(NN)
NN=NN+1
GO TO 200
C
C CALCULATE THE GRAND MEAN
C
285 FN=N
GMEAN=X(NN)/FN
C
C CALCULATE FIRST DIVISOR REQUIRED TO FORM SUM OF SQUARES AND SECOND
C DIVISOR, WHICH IS EQUAL TO DEGREES OF FREEDOM, REQUIRED TO FORM
C MEAN SQUARES
C
DO 310 I=2,K
310 MSTEP(I)=0
NN=0
MSTEP(1)=1
320 ND1=1
ND2=1
DO 340 I=1,K
IF(MSTEP(I)) 330, 340, 330
330 ND1=ND1*LEVEL(I)
ND2=ND2*(LEVEL(I)-1)
340 CONTINUE
FN1=N*ND1
FN2=ND2
NN=NN+1
SUMSQ(NN)=SUMSQ(NN)/FN1
NDF(NN)=ND2
SMEAN(NN)=SUMSQ(NN)/FN2
IF(NN-LL) 345, 370, 370
345 DO 360 I=1,K
IF(MSTEP(I)) 347, 350, 347
347 MSTEP(I)=0
GO TO 360
350 MSTEP(I)=1
GO TO 320
360 CONTINUE
370 RETURN
END
C---------------SETUP ALLOWS CORRECTION OF INPUT DATA FROM TERMINAL.
C--------------- SEE WRITE UP BOTTOM PAGE 6. ALL ARGS. ARE INPUT.
SUBROUTINE SETUP(LINES,NOUTD,IND)
DIMENSION X(16)
DOUBLE PRECISION FIL
DATA FIL/'JOB.DAT'/
CALL OFILE (1,'JOB')
DO 3 J=1,LINES
1 READ(IND,10,END=20)(X(I),I=1,16)
10 FORMAT(16A5)
3 WRITE(1,10)(X(I),I=1,16)
20 ENDFILE 1
C---------------TTYPTY RETURNS ZERO - TTY JOB, MINUS ONE - BATCH JOB
CALL TTYPTY(IWHER)
IF(IWHER.EQ.-1)GO TO 26
200 WRITE(NOUTD,21)
21 FORMAT(' OK? '/)
READ(IND,22)HUH
22 FORMAT(A3)
IF(HUH.EQ.'NO')GO TO 25
IF(HUH.EQ.'YES')GO TO 26
IF(HUH.NE.'OK')GO TO 200
GO TO 26
25 CALL IFILE(1,'JOB')
K=1
40 READ(1,10,END=41)(X(I),I=1,16)
DO 27 I=1,16
IF(X(I).NE.' ')GO TO 28
27 CONTINUE
28 DO 29 J=I,16
IF(X(J).EQ.' ')GO TO 30
29 CONTINUE
J=17
30 WRITE(NOUTD,31)K,(X(I),I=1,J-1)
31 FORMAT(' ',I3,2X,16A5)
K=K+1
GO TO 40
41 WRITE(NOUTD,45)
45 FORMAT(//)
REWIND 1
CALL DEFINE FILE(1,80,NEVER,FIL,0,0)
101 WRITE(NOUTD,42)
42 FORMAT('+CORRECTIONS? ',$)
READ(IND,43)K,(X(I),I=1,16)
43 FORMAT(I,16A5)
IF(K.EQ.0)GO TO 100
WRITE(1#K,10)(X(I),I=1,16)
REWIND 1
GO TO 101
100 CALL RELEAS(1)
26 RETURN
END