Trailing-Edge
-
PDP-10 Archives
-
decus_20tap1_198111
-
decus/20-0020/stat20.sta
There are 2 other files named stat20.sta in the archive. Click here to see a list.
100' NAME--STAT20
110'
120' DESCRIPTION--MULTIPLE LINEAR REGRESSION ACCORDING TO
130' EFROYMSON'S ALGORITHM.
140'
150' SOURCE--RALSTON AND WILF,"MATHEMATICAL METHODS FOR DIGITAL
160' COMPUTERS",P.191.
170'
180' INSTRUCTIONS--ENTER DATA STARTING IN LINE 1610.
190' FIRST DATA IS N, THE NUMBER OF INDEPENDENT VARIABLES, THEN
200' P, THE NUMBER OF DEPENDENT VARIABLES, THEN M, THE NUMBER
210' OF DATA SETS, THEN F1,THE VALUE OF F FOR ENTERING A
220' A VARIABLE, AND THEN F2 THE VALUE OF F FOR REMOVING A VARIABLE.
230' THEN ENTER THE DATA BY SET,INDEPENDENT VARIABLES BEFORE
240' DEPENDENT VARIABLES. IF M>50 OR P>7 OR N>8 THE DIM STATEMENTS IN
250' LINE 300 SHOULD BE CHANGED. SAMPLE DATA IS IN LINES 1610-1760.
260' BE SURE TO REMOVE SAMPLE DATA BEFORE RUNNING PROGRAM.
270'
280' * * * * * * * MAIN PROGRAM * * * * * * * * * *
290'
300 DIM S(15,15),A(50,8),M(8),D(8),B(7),E(7)
310 READ N, P, M, F1, F2
320 LET T1 = 1E-6
330 LET N1 = N + P
340 LET N2 = N1 + N
350 LET K = 1
360 LET D1 = M - 1
370 MAT READ A(M,N1)
380 FOR I = 1 TO M
390 LET A(I,0)=1
400 NEXT I
410 PRINT "MEANS "
420 FOR I = 0 TO N1
430 FOR J = I TO N1
440 LET S = 0
450 FOR L = 1 TO M
460 LET S = S + A(L,I) * A(L,J)
470 NEXT L
480 LET S(I,J) = S
490 NEXT J
500 LET M(I) = S(0,I) / S(0,0)
510 IF I = 0 THEN 530
520 PRINT M(I),
530 NEXT I
540 PRINT
550 PRINT
560 PRINT "STANDARD DEVIATIONS"
570 LET M1 = M * D1
580 FOR I = 1 TO N1
590 FOR J = I TO N1
600 LET S(I,J) = ( M*S(I,J) - S(0,I)*S(0,J) )/M1
610 NEXT J
620 LET D(I) = SQR( S(I,I) )
630 PRINT D(I),
640 NEXT I
650 PRINT
660 PRINT
670 PRINT "CORRELATION COEFFICIENTS"
680 FOR I = 1 TO N2
690 FOR J = I TO N2
700 IF J > N1 THEN 740
710 LET S(I,J) = S(I,J) / D(I) / D(J)
720 LET S(J,I) = S(I,J)
730 GO TO 800
740 IF I <> J - N1 THEN 780
750 LET S(I,J) = 1
760 LET S(J,I) = -1
770 GO TO 800
780 LET S(I,J) = 0
790 LET S(J,I) = 0
800 NEXT J
810 NEXT I
820 FOR I = 1 TO N1
830 FOR J = 1 TO N1
840 PRINT S(I,J),
850 NEXT J
860 PRINT
870 PRINT
880 NEXT I
890 PRINT
900 LET K1 = K + N
910 PRINT "DEPENDENT VARIABLE",K
920 FOR I = 1 TO N
930 LET B(I) = 0
940 NEXT I
950 LET S8 = D(K1) * SQR( S(K1,K1) / D1 )
960 LET V1 = 1E35
970 LET V2 = 0
980 LET N3 = 0
990 LET N4 = 0
1000 FOR I = 1 TO N
1010 IF ABS( S(I,I) ) <= T1 THEN 1140
1020 LET V0 = S(I,K1) * S(K1,I) / S(I,I)
1030 ON SGN(V0)+2 GOTO 1080,1140,1040
1040 IF V0 <= V2 THEN 1140
1050 LET V2 = V0
1060 LET N4 = I
1070 GO TO 1140
1080 LET I1 = I + N1
1090 LET B(I) = S(I1,K1) * D(K1) / D(I)
1100 LET E(I) = S8 / D(I) * SQR( S(I1,I1) )
1110 IF ABS( V0 ) >= ABS( V1 ) THEN 1140
1120 LET V1 = V0
1130 LET N3 = I
1140 NEXT I
1150 LET S = 0
1160 FOR I = 1 TO N
1170 LET S = S + B(I) * M(I)
1180 NEXT I
1190 LET B(0) = M(K1) - S
1200 PRINT "INDEX ", "B ", "STD. DEV.", "T-RATIO "
1210 PRINT 0, B(0)
1220 FOR I = 1 TO N
1230 IF B(I) = 0 THEN 1250
1240 PRINT I, B(I), E(I), B(I) / E(I)
1250 NEXT I
1260 PRINT "STANDARD ERROR OF Y ", S8 * SQR(M-1)
1270 PRINT
1280 LET F = ABS(V1) * D1 / S(K1,K1)
1290 IF F < F2 THEN 1360
1300 LET F = V2 * (D1 - 1) / ( S(K1,K1) - V2 )
1310 IF F <= F1 THEN 1570
1320 LET Q = N4
1330 LET D1 = D1 - 1
1340 PRINT "VARIABLE ENTERING ", Q
1350 GO TO 1390
1360 LET Q = N3
1370 LET D1 = D1 + 1
1380 PRINT "VARIABLE LEAVING ", Q
1390 PRINT "F-LEVEL ", F
1400 LET Y = 1 / S(Q,Q)
1410 FOR J = 1 TO N2
1420 LET S(Q,J) = S(Q,J) * Y
1430 NEXT J
1440 LET Y = -Y
1450 FOR I = 1 TO N2
1460 IF I = Q THEN 1540
1470 LET X = -S(I,Q)
1480 FOR J = 1 TO N2
1490 IF J = Q THEN 1520
1500 LET S(I,J) = S(I,J) + X * S(Q,J)
1510 GO TO 1530
1520 LET S(I,J) = S(I,J) * Y
1530 NEXT J
1540 NEXT I
1550 LET S(Q,Q) = -Y
1560 GOTO 950
1570 LET K = K + 1
1580 IF K <= P THEN 900
1590 PRINT " ***** END OF PROBLEM *****"
1600 STOP
1610 DATA 3, 1, 15, 2.500, 2.500
1620 DATA 32, 48, 54, 15
1630 DATA 36, 33, 19, 16
1640 DATA 3, 28, 30, 14
1650 DATA 12, 33, 64, 22
1660 DATA 36, 34, 60, 24
1670 DATA 24, 36, 53, 19
1680 DATA 19, 42, 29, 13
1690 DATA 20, 33, 55, 15
1700 DATA 27, 36, 62, 23
1710 DATA 15, 22, 33, 12
1720 DATA 45, 46, 68, 25
1730 DATA 9, 28, 42, 17
1740 DATA 11, 32, 45, 18
1750 DATA 33, 34, 39, 19
1760 DATA 21, 45, 39, 18
1770END