Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/besy.ssp
There are 2 other files named besy.ssp in the archive. Click here to see a list.
C BESY 10
C ..................................................................BESY 20
C BESY 30
C SUBROUTINE BESY BESY 40
C BESY 50
C PURPOSE BESY 60
C COMPUTE THE Y BESSEL FUNCTION FOR A GIVEN ARGUMENT AND ORDERBESY 70
C BESY 80
C USAGE BESY 90
C CALL BESY(X,N,BY,IER) BESY 100
C BESY 110
C DESCRIPTION OF PARAMETERS BESY 120
C X -THE ARGUMENT OF THE Y BESSEL FUNCTION DESIRED BESY 130
C N -THE ORDER OF THE Y BESSEL FUNCTION DESIRED BESY 140
C BY -THE RESULTANT Y BESSEL FUNCTION BESY 150
C IER-RESULTANT ERROR CODE WHERE BESY 160
C IER=0 NO ERROR BESY 170
C IER=1 N IS NEGATIVE BESY 180
C IER=2 X IS NEGATIVE OR ZERO BESY 190
C IER=3 BY HAS EXCEEDED MAGNITUDE OF 10**70 BESY 200
C BESY 210
C REMARKS BESY 220
C VERY SMALL VALUES OF X MAY CAUSE THE RANGE OF THE LIBRARY BESY 230
C FUNCTION ALOG TO BE EXCEEDED BESY 240
C X MUST BE GREATER THAN ZERO BESY 250
C N MUST BE GREATER THAN OR EQUAL TO ZERO BESY 260
C BESY 270
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED BESY 280
C NONE BESY 290
C BESY 300
C METHOD BESY 310
C RECURRENCE RELATION AND POLYNOMIAL APPROXIMATION TECHNIQUE BESY 320
C AS DESCRIBED BY A.J.M.HITCHCOCK,'POLYNOMIAL APPROXIMATIONS BESY 330
C TO BESSEL FUNCTIONS OF ORDER ZERO AND ONE AND TO RELATED BESY 340
C FUNCTIONS', M.T.A.C., V.11,1957,PP.86-88, AND G.N. WATSON, BESY 350
C 'A TREATISE ON THE THEORY OF BESSEL FUNCTIONS', CAMBRIDGE BESY 360
C UNIVERSITY PRESS, 1958, P. 62 BESY 370
C BESY 380
C ..................................................................BESY 390
C BESY 400
SUBROUTINE BESY(X,N,BY,IER) BESY 410
C BESY 420
C CHECK FOR ERRORS IN N AND X BESY 430
C BESY 440
IF(N)180,10,10 BESY 450
10 IER=0 BESY 460
IF(X)190,190,20 BESY 470
C BESY 480
C BRANCH IF X LESS THAN OR EQUAL 4 BESY 490
C BESY 500
20 IF(X-4.0)40,40,30 BESY 510
C BESY 520
C COMPUTE Y0 AND Y1 FOR X GREATER THAN 4 BESY 530
C BESY 540
30 T1=4.0/X BESY 550
T2=T1*T1 BESY 560
P0=((((-.0000037043*T2+.0000173565)*T2-.0000487613)*T2 BESY 570
1 +.00017343)*T2-.001753062)*T2+.3989423 BESY 580
Q0=((((.0000032312*T2-.0000142078)*T2+.0000342468)*T2 BESY 590
1 -.0000869791)*T2+.0004564324)*T2-.01246694 BESY 600
P1=((((.0000042414*T2-.0000200920)*T2+.0000580759)*T2 BESY 610
1 -.000223203)*T2+.002921826)*T2+.3989423 BESY 620
Q1=((((-.0000036594*T2+.00001622)*T2-.0000398708)*T2 BESY 630
1 +.0001064741)*T2-.0006390400)*T2+.03740084 BESY 640
A=2.0/SQRT(X) BESY 650
B=A*T1 BESY 660
C=X-.7853982 BESY 670
Y0=A*P0*SIN(C)+B*Q0*COS(C) BESY 680
Y1=-A*P1*COS(C)+B*Q1*SIN(C) BESY 690
GO TO 90 BESY 700
C BESY 710
C COMPUTE Y0 AND Y1 FOR X LESS THAN OR EQUAL TO 4 BESY 720
C BESY 730
40 XX=X/2. BESY 740
X2=XX*XX BESY 750
T=ALOG(XX)+.5772157 BESY 760
SUM=0. BESY 770
TERM=T BESY 780
Y0=T BESY 790
DO 70 L=1,15 BESY 800
IF(L-1)50,60,50 BESY 810
50 SUM=SUM+1./FLOAT(L-1) BESY 820
60 FL=L BESY 830
TS=T-SUM BESY 840
TERM=(TERM*(-X2)/FL**2)*(1.-1./(FL*TS)) BESY 850
70 Y0=Y0+TERM BESY 860
TERM = XX*(T-.5) BESY 870
SUM=0. BESY 880
Y1=TERM BESY 890
DO 80 L=2,16 BESY 900
SUM=SUM+1./FLOAT(L-1) BESY 910
FL=L BESY 920
FL1=FL-1. BESY 930
TS=T-SUM BESY 940
TERM=(TERM*(-X2)/(FL1*FL))*((TS-.5/FL)/(TS+.5/FL1)) BESY 950
80 Y1=Y1+TERM BESY 960
PI2=.6366198 BESY 970
Y0=PI2*Y0 BESY 980
Y1=-PI2/X+PI2*Y1 BESY 990
C BESY1000
C CHECK IF ONLY Y0 OR Y1 IS DESIRED BESY1010
C BESY1020
90 IF(N-1)100,100,130 BESY1030
C BESY1040
C RETURN EITHER Y0 OR Y1 AS REQUIRED BESY1050
C BESY1060
100 IF(N)110,120,110 BESY1070
110 BY=Y1 BESY1080
GO TO 170 BESY1090
120 BY=Y0 BESY1100
GO TO 170 BESY1110
C BESY1120
C PERFORM RECURRENCE OPERATIONS TO FIND YN(X) BESY1130
C BESY1140
130 YA=Y0 BESY1150
YB=Y1 BESY1160
K=1 BESY1170
140 T=FLOAT(2*K)/X BESY1180
YC=T*YB-YA BESY1190
IF(ABS(YC)-1.7E33)145,145,141 BESY1200
141 IER=3 BESY1210
RETURN BESY1220
145 K=K+1 BESY1230
IF(K-N)150,160,150 BESY1240
150 YA=YB BESY1250
YB=YC BESY1260
GO TO 140 BESY1270
160 BY=YC BESY1280
170 RETURN BESY1290
180 IER=1 BESY1300
RETURN BESY1310
190 IER=2 BESY1320
RETURN BESY1330
END BESY1340