Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/dapch.ssp
There are 2 other files named dapch.ssp in the archive. Click here to see a list.
C DAPC 10
C ..................................................................DAPC 20
C DAPC 30
C SUBROUTINE DAPCH DAPC 40
C DAPC 50
C PURPOSE DAPC 60
C SET UP NORMAL EQUATIONS OF LEAST SQUARES FIT IN TERMS OF DAPC 70
C CHEBYSHEV POLYNOMIALS FOR A GIVEN DISCRETE FUNCTION DAPC 80
C DAPC 90
C USAGE DAPC 100
C CALL DAPCH(DATI,N,IP,XD,X0,WORK,IER) DAPC 110
C DAPC 120
C DESCRIPTION OF PARAMETERS DAPC 130
C DATI - VECTOR OF DIMENSION 3*N (OR DIMENSION 2*N+1) DAPC 140
C CONTAINING THE GIVEN ARGUMENTS, FOLLOWED BY THE DAPC 150
C FUNCTION VALUES AND N (RESPECTIVELY 1) WEIGHT DAPC 160
C VALUES. THE CONTENT OF VECTOR DATI REMAINS DAPC 170
C UNCHANGED. DAPC 180
C DATI MUST BE OF DOUBLE PRECISION DAPC 190
C N - NUMBER OF GIVEN POINTS DAPC 200
C IP - DIMENSION OF LEAST SQUARES FIT, I.E. NUMBER OF DAPC 210
C CHEBYSHEV POLYNOMIALS USED AS FUNDAMENTAL FUNCTIONS DAPC 220
C IP SHOULD NOT EXCEED N DAPC 230
C XD - RESULTANT MULTIPLICATIVE CONSTANT FOR LINEAR DAPC 240
C TRANSFORMATION OF ARGUMENT RANGE DAPC 250
C XD MUST BE DOUBLE PRECISION DAPC 260
C X0 - RESULTANT ADDITIVE CONSTANT FOR LINEAR DAPC 270
C TRANSFORMATION OF ARGUMENT RANGE DAPC 280
C X0 MUST BE DOUBLE PRECISION DAPC 290
C WORK - WORKING STORAGE OF DIMENSION (IP+1)*(IP+2)/2 DAPC 300
C ON RETURN WORK CONTAINS THE SYMMETRIC COEFFICIENT DAPC 310
C MATRIX OF THE NORMAL EQUATIONS IN COMPRESSED FORM DAPC 320
C FOLLOWED IMMEDIATELY BY RIGHT HAND SIDE DAPC 330
C AND SQUARE SUM OF FUNCTION VALUES DAPC 340
C WORK MUST BE OF DOUBLE PRECISION DAPC 350
C IER - RESULTING ERROR PARAMETER DAPC 360
C IER =-1 MEANS FORMAL ERRORS IN DIMENSION DAPC 370
C IER = 0 MEANS NO ERRORS DAPC 380
C IER = 1 MEANS COINCIDING ARGUMENTS DAPC 390
C DAPC 400
C REMARKS DAPC 410
C NO WEIGHTS ARE USED IF THE VALUE OF DATI(2*N+1) IS DAPC 420
C NOT POSITIVE. DAPC 430
C EXECUTION OF SUBROUTINE DAPCH IS A PREPARATORY STEP FOR DAPC 440
C CALCULATION OF LEAST SQUARES FITS IN CHEBYSHEV POLYNOMIALS DAPC 450
C IT SHOULD BE FOLLOWED BY EXECUTION OF SUBROUTINE DAPFS DAPC 460
C DAPC 470
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED DAPC 480
C NONE DAPC 490
C DAPC 500
C METHOD DAPC 510
C THE LEAST SQUARE FIT IS DETERMINED USING CHEBYSHEV DAPC 520
C POLYNOMIALS AS FUNDAMENTAL FUNCTION SYSTEM. DAPC 530
C THE METHOD IS DISCUSSED IN THE ARTICLE DAPC 540
C A.T.BERZTISS, LEAST SQUARES FITTING TO IRREGULARLY SPACED DAPC 550
C DATA, SIAM REVIEW, VOL.6, ISS.3, 1964, PP. 203-227. DAPC 560
C DAPC 570
C ..................................................................DAPC 580
C DAPC 590
SUBROUTINE DAPCH(DATI,N,IP,XD,X0,WORK,IER) DAPC 600
C DAPC 610
C DAPC 620
C DIMENSIONED DUMMY VARIABLES DAPC 630
DIMENSION DATI(1),WORK(1) DAPC 640
DOUBLE PRECISION DATI,WORK,XD,X0,XA,XE,XM,DF,T,SUM DAPC 650
C DAPC 660
C CHECK FOR FORMAL ERRORS IN SPECIFIED DIMENSIONS DAPC 670
IF(N-1)19,20,1 DAPC 680
1 IF(IP)19,19,2 DAPC 690
C DAPC 700
C SEARCH SMALLEST AND LARGEST ARGUMENT DAPC 710
2 IF(IP-N)3,3,19 DAPC 720
3 XA=DATI(1) DAPC 730
X0=XA DAPC 740
XE=0.D0 DAPC 750
DO 7 I=1,N DAPC 760
XM=DATI(I) DAPC 770
IF(XA-XM)5,5,4 DAPC 780
4 XA=XM DAPC 790
5 IF(X0-XM)6,7,7 DAPC 800
6 X0=XM DAPC 810
7 CONTINUE DAPC 820
C DAPC 830
C INITIALIZE CALCULATION OF NORMAL EQUATIONS DAPC 840
XD=X0-XA DAPC 850
M=(IP*(IP+1))/2 DAPC 860
IEND=M+IP+1 DAPC 870
MT2=IP+IP DAPC 880
MT2M=MT2-1 DAPC 890
C DAPC 900
C SET WORKING STORAGE AND RIGHT HAND SIDE TO ZERO DAPC 910
DO 8 I=1,IP DAPC 920
J=MT2-I DAPC 930
WORK(J)=0.D0 DAPC 940
WORK(I)=0.D0 DAPC 950
K=M+I DAPC 960
8 WORK(K)=0.D0 DAPC 970
C DAPC 980
C CHECK FOR DEGENERATE ARGUMENT RANGE DAPC 990
IF(XD)20,20,9 DAPC1000
C DAPC1010
C CALCULATE CONSTANTS FOR REDUCTION OF ARGUMENTS DAPC1020
9 X0=-(X0+XA)/XD DAPC1030
XD=2.D0/XD DAPC1040
SUM=0.D0 DAPC1050
C DAPC1060
C START GREAT LOOP OVER ALL GIVEN POINTS DAPC1070
DO 15 I=1,N DAPC1080
T=DATI(I)*XD+X0 DAPC1090
J=I+N DAPC1100
DF=DATI(J) DAPC1110
C DAPC1120
C CALCULATE AND STORE VALUES OF CHEBYSHEV POLYNOMIALS DAPC1130
C FOR ARGUMENT T DAPC1140
XA=1.D0 DAPC1150
XM=T DAPC1160
IF(DATI(2*N+1))11,11,10 DAPC1170
10 J=J+N DAPC1180
XA=DATI(J) DAPC1190
XM=T*XA DAPC1200
11 T=T+T DAPC1210
SUM=SUM+DF*DF*XA DAPC1220
DF=DF+DF DAPC1230
J=1 DAPC1240
12 K=M+J DAPC1250
WORK(K)=WORK(K)+DF*XA DAPC1260
13 WORK(J)=WORK(J)+XA DAPC1270
IF(J-MT2M)14,15,15 DAPC1280
14 J=J+1 DAPC1290
XE=T*XM-XA DAPC1300
XA=XM DAPC1310
XM=XE DAPC1320
IF(J-IP)12,12,13 DAPC1330
15 CONTINUE DAPC1340
WORK(IEND)=SUM+SUM DAPC1350
C DAPC1360
C CALCULATE MATRIX OF NORMAL EQUATIONS DAPC1370
LL=M DAPC1380
KK=MT2M DAPC1390
JJ=1 DAPC1400
K=KK DAPC1410
DO 18 J=1,M DAPC1420
WORK(LL)=WORK(K)+WORK(JJ) DAPC1430
LL=LL-1 DAPC1440
IF(K-JJ)16,16,17 DAPC1450
16 KK=KK-2 DAPC1460
K=KK DAPC1470
JJ=1 DAPC1480
GOTO 18 DAPC1490
17 JJ=JJ+1 DAPC1500
K=K-1 DAPC1510
18 CONTINUE DAPC1520
IER=0 DAPC1530
RETURN DAPC1540
C DAPC1550
C ERROR RETURN IN CASE OF FORMAL ERRORS DAPC1560
19 IER=-1 DAPC1570
RETURN DAPC1580
C DAPC1590
C ERROR RETURN IN CASE OF COINCIDING ARGUMENTS DAPC1600
20 IER=1 DAPC1610
RETURN DAPC1620
END DAPC1630