Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/ddcar.ssp
There are 2 other files named ddcar.ssp in the archive. Click here to see a list.
C DDCA 10
C ..................................................................DDCA 20
C DDCA 30
C SUBROUTINE DDCAR DDCA 40
C DDCA 50
C PURPOSE DDCA 60
C TO COMPUTE, AT A GIVEN POINT X, AN APPROXIMATION Z TO THE DDCA 70
C DERIVATIVE OF AN ANALYTICALLY GIVEN FUNCTION FCT THAT IS 11- DDCA 80
C TIMES DIFFERENTIABLE IN A DOMAIN CONTAINING A CLOSED, 2-SIDED DDCA 90
C SYMMETRIC INTERVAL OF RADIUS ABSOLUTE H ABOUT X, USING FUNCTIONDDCA 100
C VALUES ONLY ON THAT CLOSED INTERVAL. DDCA 110
C DDCA 120
C USAGE DDCA 130
C CALL DDCAR(X,H,IH,FCT,Z) DDCA 140
C PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT DDCA 150
C DDCA 160
C DESCRIPTION OF PARAMETERS DDCA 170
C X - THE POINT AT WHICH THE DERIVATIVE IS TO BE COMPUTED DDCA 180
C X IS IN DOUBLE PRECISION. DDCA 190
C H - THE NUMBER WHOSE ABSOLUTE VALUE DEFINES THE CLOSED, DDCA 200
C SYMMETRIC 2-SIDED INTERVAL ABOUT X (SEE PURPOSE) DDCA 210
C H IS IN SINGLE PRECISION DDCA 220
C IH - INPUT PARAMETER (SEE REMARKS AND METHOD) DDCA 230
C IH NON-ZERO - THE SUBROUTINE GENERATES THE INTERNAL DDCA 240
C VALUE HH DDCA 250
C IH = 0 - THE INTERNAL VALUE HH IS SET TO ABSOLUTE H DDCA 260
C FCT - THE NAME OF THE EXTERNAL DOUBLE PRECISION FUNCTION DDCA 270
C SUBPROGRAM THAT WILL GENERATE THE NECESSARY FUNCTION DDCA 280
C VALUES. DDCA 290
C Z - RESULTING DERIVATIVE VALUE - DOUBLE PRECISION DDCA 300
C DDCA 310
C REMARKS DDCA 320
C (1) IF H = 0, THEN THERE IS NO COMPUTATION. DDCA 330
C (2) THE INTERNAL VALUE HH, WHICH IS DETERMINED ACCORDING TO DDCA 340
C IH, IS THE MAXIMUM STEP-SIZE USED IN THE COMPUTATION OF DDCA 350
C THE CENTRAL DIVIDED DIFFERENCES (SEE METHOD.) IF IH IS DDCA 360
C NON-ZERO, THEN THE SUBROUTINE GENERATES HH ACCORDING TO DDCA 370
C CRITERIA THAT BALANCE ROUND-OFF AND TRUNCATION ERROR. HH DDCA 380
C IS ALWAYS LESS THAN OR EQUAL TO ABSOLUTE H IN ABSOLUTE DDCA 390
C VALUE, SO THAT ALL COMPUTATION OCCURS WITHIN A RADIUS DDCA 400
C ABSOLUTE H OF X. DDCA 410
C DDCA 420
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED DDCA 430
C THE EXTERNAL FUNCTION SUBPROGRAM FCT(T) MUST BE FURNISHED BY DDCA 440
C THE USER. FCT(T) IS IN DOUBLE PRECISION DDCA 450
C DDCA 460
C METHOD DDCA 470
C THE COMPUTATION OF Z IS BASED ON RICHARDSON'S AND ROMBERG'S DDCA 480
C EXTRAPOLATION METHOD AS APPLIED TO THE SEQUENCE OF CENTRAL DDCA 490
C DIVIDED DIFFERENCES ASSOCIATED WITH THE POINT PAIRS DDCA 500
C (X-(K*HH)/5,X+(K*HH)/5) K=1,...,5. (SEE FILLIPI, S. AND DDCA 510
C ENGELS, H., ALTES UND NEUES ZUR NUMERISCHEN DIFFERENTIATION, DDCA 520
C ELECTRONISCHE DATENVERARBEITUNG, ISS. 2 (1966), PP. 57-65.) DDCA 530
C DDCA 540
C ..................................................................DDCA 550
C DDCA 560
SUBROUTINE DDCAR(X,H,IH,FCT,Z) DDCA 570
C DDCA 580
C DDCA 590
DIMENSION AUX(5) DDCA 600
DOUBLE PRECISION X,FCT,Z,AUX,A,B,C,DH,HH DDCA 610
C DDCA 620
C NO ACTION IN CASE OF ZERO INTERVAL LENGTH DDCA 630
IF(H)1,17,1 DDCA 640
C DDCA 650
C GENERATE STEPSIZE HH FOR DIVIDED DIFFERENCES DDCA 660
1 C=ABS(H) DDCA 670
IF(IH)2,9,2 DDCA 680
2 HH=.5D-2 DDCA 690
IF(C-HH)3,4,4 DDCA 700
3 HH=C DDCA 710
4 A=FCT(X+HH) DDCA 720
B=FCT(X-HH) DDCA 730
Z=DABS((A-B)/(HH+HH)) DDCA 740
A=.5D0*DABS(A+B) DDCA 750
HH=.5D-2 DDCA 760
IF(A-1.D0)6,6,5 DDCA 770
5 HH=HH*A DDCA 780
6 IF(Z-1.D0)8,8,7 DDCA 790
7 HH=HH/Z DDCA 800
8 IF(HH-C)10,10,9 DDCA 810
9 HH=C DDCA 820
C DDCA 830
C INITIALIZE DIFFERENTIATION LOOP DDCA 840
10 Z=(FCT(X+HH)-FCT(X-HH))/(HH+HH) DDCA 850
J=5 DDCA 860
JJ=J-1 DDCA 870
AUX(J)=Z DDCA 880
DH=HH/DFLOAT(J) DDCA 890
DZ=1.7E38 DDCA 900
C DDCA 910
C START DIFFERENTIATION LOOP DDCA 920
11 J=J-1 DDCA 930
C=J DDCA 940
HH=C*DH DDCA 950
AUX(J)=(FCT(X+HH)-FCT(X-HH))/(HH+HH) DDCA 960
C DDCA 970
C INITIALIZE EXTRAPOLATION LOOP DDCA 980
D2=1.7E38 DDCA 990
B=0.D0 DDCA1000
A=1.D0/C DDCA1010
C DDCA1020
C START EXTRAPOLATION LOOP DDCA1030
DO 12 I=J,JJ DDCA1040
D1=D2 DDCA1050
B=B+A DDCA1060
HH=(AUX(I)-AUX(I+1))/(B*(2.D0+B)) DDCA1070
AUX(I+1)=AUX(I)+HH DDCA1080
C DDCA1090
C TEST ON OSCILLATING INCREMENTS DDCA1100
D2=DABS(HH) DDCA1110
IF(D2-D1)12,13,13 DDCA1120
12 CONTINUE DDCA1130
C END OF EXTRAPOLATION LOOP DDCA1140
C DDCA1150
C UPDATE RESULT VALUE Z DDCA1160
I=JJ+1 DDCA1170
GO TO 14 DDCA1180
13 D2=D1 DDCA1190
JJ=I DDCA1200
14 IF(D2-DZ)15,16,16 DDCA1210
15 DZ=D2 DDCA1220
Z=AUX(I) DDCA1230
16 IF(J-1)17,17,11 DDCA1240
C END OF DIFFERENTIATION LOOP DDCA1250
C DDCA1260
17 RETURN DDCA1270
END DDCA1280