Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/dfmcg.ssp
There are 2 other files named dfmcg.ssp in the archive. Click here to see a list.
C DFMC 10
C ..................................................................DFMC 20
C DFMC 30
C SUBROUTINE DFMCG DFMC 40
C DFMC 50
C PURPOSE DFMC 60
C TO FIND A LOCAL MINIMUM OF A FUNCTION OF SEVERAL VARIABLES DFMC 70
C BY THE METHOD OF CONJUGATE GRADIENTS DFMC 80
C DFMC 90
C USAGE DFMC 100
C CALL DFMCG(FUNCT,N,X,F,G,EST,EPS,LIMIT,IER,H) DFMC 110
C DFMC 120
C DESCRIPTION OF PARAMETERS DFMC 130
C FUNCT - USER-WRITTEN SUBROUTINE CONCERNING THE FUNCTION TO DFMC 140
C BE MINIMIZED. IT MUST BE OF THE FORM DFMC 150
C SUBROUTINE FUNCT(N,ARG,VAL,GRAD) DFMC 160
C AND MUST SERVE THE FOLLOWING PURPOSE DFMC 170
C FOR EACH N-DIMENSIONAL ARGUMENT VECTOR ARG, DFMC 180
C FUNCTION VALUE AND GRADIENT VECTOR MUST BE COMPUTEDDFMC 190
C AND, ON RETURN, STORED IN VAL AND GRAD RESPECTIVELYDFMC 200
C ARG,VAL AND GRAD MUST BE OF DOUBLE PRECISION. DFMC 210
C N - NUMBER OF VARIABLES DFMC 220
C X - VECTOR OF DIMENSION N CONTAINING THE INITIAL DFMC 230
C ARGUMENT WHERE THE ITERATION STARTS. ON RETURN, DFMC 240
C X HOLDS THE ARGUMENT CORRESPONDING TO THE DFMC 250
C COMPUTED MINIMUM FUNCTION VALUE DFMC 260
C DOUBLE PRECISION VECTOR. DFMC 270
C F - SINGLE VARIABLE CONTAINING THE MINIMUM FUNCTION DFMC 280
C VALUE ON RETURN, I.E. F=F(X). DFMC 290
C DOUBLE PRECISION VARIABLE. DFMC 300
C G - VECTOR OF DIMENSION N CONTAINING THE GRADIENT DFMC 310
C VECTOR CORRESPONDING TO THE MINIMUM ON RETURN, DFMC 320
C I.E. G=G(X). DFMC 330
C DOUBLE PRECISION VECTOR. DFMC 340
C EST - IS AN ESTIMATE OF THE MINIMUM FUNCTION VALUE. DFMC 350
C SINGLE PRECISION VARIABLE. DFMC 360
C EPS - TESTVALUE REPRESENTING THE EXPECTED ABSOLUTE ERROR.DFMC 370
C A REASONABLE CHOICE IS 10**(-16), I.E. DFMC 380
C SOMEWHAT GREATER THAN 10**(-D), WHERE D IS THE DFMC 390
C NUMBER OF SIGNIFICANT DIGITS IN FLOATING POINT DFMC 400
C REPRESENTATION. DFMC 410
C SINGLE PRECISION VARIABLE. DFMC 420
C LIMIT - MAXIMUM NUMBER OF ITERATIONS. DFMC 430
C IER - ERROR PARAMETER DFMC 440
C IER = 0 MEANS CONVERGENCE WAS OBTAINED DFMC 450
C IER = 1 MEANS NO CONVERGENCE IN LIMIT ITERATIONS DFMC 460
C IER =-1 MEANS ERRORS IN GRADIENT CALCULATION DFMC 470
C IER = 2 MEANS LINEAR SEARCH TECHNIQUE INDICATES DFMC 480
C IT IS LIKELY THAT THERE EXISTS NO MINIMUM. DFMC 490
C H - WORKING STORAGE OF DIMENSION 2*N. DFMC 500
C DOUBLE PRECISION ARRAY. DFMC 510
C DFMC 520
C REMARKS DFMC 530
C I) THE SUBROUTINE NAME REPLACING THE DUMMY ARGUMENT FUNCT DFMC 540
C MUST BE DECLARED AS EXTERNAL IN THE CALLING PROGRAM. DFMC 550
C II) IER IS SET TO 2 IF , STEPPING IN ONE OF THE COMPUTED DFMC 560
C DIRECTIONS, THE FUNCTION WILL NEVER INCREASE WITHIN DFMC 570
C A TOLERABLE RANGE OF ARGUMENT. DFMC 580
C IER = 2 MAY OCCUR ALSO IF THE INTERVAL WHERE F DFMC 590
C INCREASES IS SMALL AND THE INITIAL ARGUMENT WAS DFMC 600
C RELATIVELY FAR AWAY FROM THE MINIMUM SUCH THAT THE DFMC 610
C MINIMUM WAS OVERLEAPED. THIS IS DUE TO THE SEARCH DFMC 620
C TECHNIQUE WHICH DOUBLES THE STEPSIZE UNTIL A POINT DFMC 630
C IS FOUND WHERE THE FUNCTION INCREASES. DFMC 640
C DFMC 650
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED DFMC 660
C FUNCT DFMC 670
C DFMC 680
C METHOD DFMC 690
C THE METHOD IS DESCRIBED IN THE FOLLOWING ARTICLE DFMC 700
C R.FLETCHER AND C.M.REEVES, FUNCTION MINIMIZATION BY DFMC 710
C CONJUGATE GRADIENTS, DFMC 720
C COMPUTER JOURNAL VOL.7, ISS.2, 1964, PP.149-154. DFMC 730
C DFMC 740
C ..................................................................DFMC 750
C DFMC 760
SUBROUTINE DFMCG(FUNCT,N,X,F,G,EST,EPS,LIMIT,IER,H) DFMC 770
C DFMC 780
C DIMENSIONED DUMMY VARIABLES DFMC 790
DIMENSION X(1),G(1),H(1) DFMC 800
DOUBLE PRECISION X,G,GNRM,H,HNRM,F,FX,FY,OLDF,OLDG,SNRM,AMBDA, DFMC 810
1ALFA,DALFA,T,Z,W,DX,DY DFMC 820
C DFMC 830
C COMPUTE FUNCTION VALUE AND GRADIENT VECTOR FOR INITIAL ARGUMENTDFMC 840
CALL FUNCT(N,X,F,G) DFMC 850
C DFMC 860
C RESET ITERATION COUNTER DFMC 870
KOUNT=0 DFMC 880
IER=0 DFMC 890
N1=N+1 DFMC 900
C DFMC 910
C START ITERATION CYCLE FOR EVERY N+1 ITERATIONS DFMC 920
1 DO 43 II=1,N1 DFMC 930
C DFMC 940
C STEP ITERATION COUNTER AND SAVE FUNCTION VALUE DFMC 950
KOUNT=KOUNT+1 DFMC 960
OLDF=F DFMC 970
C DFMC 980
C COMPUTE SQUARE OF GRADIENT AND TERMINATE IF ZERO DFMC 990
GNRM=0.D0 DFMC1000
DO 2 J=1,N DFMC1010
2 GNRM=GNRM+G(J)*G(J) DFMC1020
IF(GNRM)46,46,3 DFMC1030
C DFMC1040
C EACH TIME THE ITERATION LOOP IS EXECUTED , THE FIRST STEP WILL DFMC1050
C BE IN DIRECTION OF STEEPEST DESCENT DFMC1060
3 IF(II-1)4,4,6 DFMC1070
4 DO 5 J=1,N DFMC1080
5 H(J)=-G(J) DFMC1090
GO TO 8 DFMC1100
C DFMC1110
C FURTHER DIRECTION VECTORS H WILL BE CHOOSEN CORRESPONDING DFMC1120
C TO THE CONJUGATE GRADIENT METHOD DFMC1130
6 AMBDA=GNRM/OLDG DFMC1140
DO 7 J=1,N DFMC1150
7 H(J)=AMBDA*H(J)-G(J) DFMC1160
C DFMC1170
C COMPUTE TESTVALUE FOR DIRECTIONAL VECTOR AND DIRECTIONAL DFMC1180
C DERIVATIVE DFMC1190
8 DY=0.D0 DFMC1200
HNRM=0.D0 DFMC1210
DO 9 J=1,N DFMC1220
K=J+N DFMC1230
C DFMC1240
C SAVE ARGUMENT VECTOR DFMC1250
H(K)=X(J) DFMC1260
HNRM=HNRM+DABS(H(J)) DFMC1270
9 DY=DY+H(J)*G(J) DFMC1280
C DFMC1290
C CHECK WHETHER FUNCTION WILL DECREASE STEPPING ALONG H AND DFMC1300
C SKIP LINEAR SEARCH ROUTINE IF NOT DFMC1310
IF(DY)10,42,42 DFMC1320
C DFMC1330
C COMPUTE SCALE FACTOR USED IN LINEAR SEARCH SUBROUTINE DFMC1340
10 SNRM=1.D0/HNRM DFMC1350
C DFMC1360
C SEARCH MINIMUM ALONG DIRECTION H DFMC1370
C DFMC1380
C SEARCH ALONG H FOR POSITIVE DIRECTIONAL DERIVATIVE DFMC1390
FY=F DFMC1400
ALFA=2.D0*(EST-F)/DY DFMC1410
AMBDA=SNRM DFMC1420
C DFMC1430
C USE ESTIMATE FOR STEPSIZE ONLY IF IT IS POSITIVE AND LESS THAN DFMC1440
C SNRM. OTHERWISE TAKE SNRM AS STEPSIZE. DFMC1450
IF(ALFA)13,13,11 DFMC1460
11 IF(ALFA-AMBDA)12,13,13 DFMC1470
12 AMBDA=ALFA DFMC1480
13 ALFA=0.D0 DFMC1490
C DFMC1500
C SAVE FUNCTION AND DERIVATIVE VALUES FOR OLD ARGUMENT DFMC1510
14 FX=FY DFMC1520
DX=DY DFMC1530
C DFMC1540
C STEP ARGUMENT ALONG H DFMC1550
DO 15 I=1,N DFMC1560
15 X(I)=X(I)+AMBDA*H(I) DFMC1570
C DFMC1580
C COMPUTE FUNCTION VALUE AND GRADIENT FOR NEW ARGUMENT DFMC1590
CALL FUNCT(N,X,F,G) DFMC1600
FY=F DFMC1610
C DFMC1620
C COMPUTE DIRECTIONAL DERIVATIVE DY FOR NEW ARGUMENT. TERMINATE DFMC1630
C SEARCH, IF DY POSITIVE. IF DY IS ZERO THE MINIMUM IS FOUND DFMC1640
DY=0.D0 DFMC1650
DO 16 I=1,N DFMC1660
16 DY=DY+G(I)*H(I) DFMC1670
IF(DY)17,38,20 DFMC1680
C DFMC1690
C TERMINATE SEARCH ALSO IF THE FUNCTION VALUE INDICATES THAT DFMC1700
C A MINIMUM HAS BEEN PASSED DFMC1710
17 IF(FY-FX)18,20,20 DFMC1720
C DFMC1730
C REPEAT SEARCH AND DOUBLE STEPSIZE FOR FURTHER SEARCHES DFMC1740
18 AMBDA=AMBDA+ALFA DFMC1750
ALFA=AMBDA DFMC1760
C DFMC1770
C TERMINATE IF THE CHANGE IN ARGUMENT GETS VERY LARGE DFMC1780
IF(HNRM*AMBDA-1.D10)14,14,19 DFMC1790
C DFMC1800
C LINEAR SEARCH TECHNIQUE INDICATES THAT NO MINIMUM EXISTS DFMC1810
19 IER=2 DFMC1820
C DFMC1821
C RESTORE OLD VALUES OF FUNCTION AND ARGUMENTS DFMC1822
F=OLDF DFMC1823
DO 100 J=1,N DFMC1824
G(J)=H(J) DFMC1825
K=N+J DFMC1826
100 X(J)=H(K) DFMC1827
RETURN DFMC1830
C END OF SEARCH LOOP DFMC1840
C DFMC1850
C INTERPOLATE CUBICALLY IN THE INTERVAL DEFINED BY THE SEARCH DFMC1860
C ABOVE AND COMPUTE THE ARGUMENT X FOR WHICH THE INTERPOLATION DFMC1870
C POLYNOMIAL IS MINIMIZED DFMC1880
C DFMC1890
20 T=0. DFMC1900
21 IF(AMBDA)22,38,22 DFMC1910
22 Z=3.D0*(FX-FY)/AMBDA+DX+DY DFMC1920
ALFA=DMAX1(DABS(Z),DABS(DX),DABS(DY)) DFMC1930
DALFA=Z/ALFA DFMC1940
DALFA=DALFA*DALFA-DX/ALFA*DY/ALFA DFMC1950
IF(DALFA)23,27,27 DFMC1960
C DFMC1970
C RESTORE OLD VALUES OF FUNCTION AND ARGUMENTS DFMC1980
23 DO 24 J=1,N DFMC1990
K=N+J DFMC2000
24 X(J)=H(K) DFMC2010
CALL FUNCT(N,X,F,G) DFMC2020
C DFMC2030
C TEST FOR REPEATED FAILURE OF ITERATION DFMC2040
25 IF(IER)47,26,47 DFMC2050
26 IER=-1 DFMC2060
GOTO 1 DFMC2070
27 W=ALFA*DSQRT(DALFA) DFMC2080
ALFA=DY-DX+W+W DFMC2090
IF(ALFA)270,271,270 DFMC2091
270 ALFA=(DY-Z+W)/ALFA DFMC2092
GO TO 272 DFMC2093
271 ALFA=(Z+DY-W)/(Z+DX+Z+DY) DFMC2094
272 ALFA=ALFA*AMBDA DFMC2095
DO 28 I=1,N DFMC2100
28 X(I)=X(I)+(T-ALFA)*H(I) DFMC2110
C DFMC2120
C TERMINATE, IF THE VALUE OF THE ACTUAL FUNCTION AT X IS LESS DFMC2130
C THAN THE FUNCTION VALUES AT THE INTERVAL ENDS. OTHERWISE REDUCEDFMC2140
C THE INTERVAL BY CHOOSING ONE END-POINT EQUAL TO X AND REPEAT DFMC2150
C THE INTERPOLATION. WHICH END-POINT IS CHOOSEN DEPENDS ON THE DFMC2160
C VALUE OF THE FUNCTION AND ITS GRADIENT AT X DFMC2170
C DFMC2180
CALL FUNCT(N,X,F,G) DFMC2190
IF(F-FX)29,29,30 DFMC2200
29 IF(F-FY)38,38,30 DFMC2210
C DFMC2220
C COMPUTE DIRECTIONAL DERIVATIVE DFMC2230
30 DALFA=0.D0 DFMC2240
DO 31 I=1,N DFMC2250
31 DALFA=DALFA+G(I)*H(I) DFMC2260
IF(DALFA)32,35,35 DFMC2270
32 IF(F-FX)34,33,35 DFMC2280
33 IF(DX-DALFA)34,38,34 DFMC2290
34 FX=F DFMC2300
DX=DALFA DFMC2310
T=ALFA DFMC2320
AMBDA=ALFA DFMC2330
GO TO 21 DFMC2340
35 IF(FY-F)37,36,37 DFMC2350
36 IF(DY-DALFA)37,38,37 DFMC2360
37 FY=F DFMC2370
DY=DALFA DFMC2380
AMBDA=AMBDA-ALFA DFMC2390
GO TO 20 DFMC2400
C DFMC2410
C TERMINATE, IF FUNCTION HAS NOT DECREASED DURING LAST ITERATION DFMC2420
C OTHERWISE SAVE GRADIENT NORM DFMC2430
38 IF(OLDF-F+EPS)19,25,39 DFMC2440
39 OLDG=GNRM DFMC2450
C DFMC2460
C COMPUTE DIFFERENCE OF NEW AND OLD ARGUMENT VECTOR DFMC2470
T=0.D0 DFMC2480
DO 40 J=1,N DFMC2490
K=J+N DFMC2500
H(K)=X(J)-H(K) DFMC2510
40 T=T+DABS(H(K)) DFMC2520
C DFMC2530
C TEST LENGTH OF DIFFERENCE VECTOR IF AT LEAST N+1 ITERATIONS DFMC2540
C HAVE BEEN EXECUTED. TERMINATE, IF LENGTH IS LESS THAN EPS DFMC2550
IF(KOUNT-N1)42,41,41 DFMC2560
41 IF(T-EPS)45,45,42 DFMC2570
C DFMC2580
C TERMINATE, IF NUMBER OF ITERATIONS WOULD EXCEED LIMIT DFMC2590
42 IF(KOUNT-LIMIT)43,44,44 DFMC2600
43 IER=0 DFMC2610
C END OF ITERATION CYCLE DFMC2620
C DFMC2630
C START NEXT ITERATION CYCLE DFMC2640
GO TO 1 DFMC2650
C DFMC2660
C NO CONVERGENCE AFTER LIMIT ITERATIONS DFMC2670
44 IER=1 DFMC2680
IF(GNRM-EPS)46,46,47 DFMC2690
C DFMC2700
C TEST FOR SUFFICIENTLY SMALL GRADIENT DFMC2710
45 IF(GNRM-EPS)46,46,25 DFMC2720
46 IER=0 DFMC2730
47 RETURN DFMC2740
END DFMC2750