Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/dllsq.ssp
There are 2 other files named dllsq.ssp in the archive. Click here to see a list.
C DLLS 10
C ..................................................................DLLS 20
C DLLS 30
C SUBROUTINE DLLSQ DLLS 40
C DLLS 50
C PURPOSE DLLS 60
C TO SOLVE LINEAR LEAST SQUARES PROBLEMS, I.E. TO MINIMIZE DLLS 70
C THE EUCLIDEAN NORM OF B-A*X, WHERE A IS A M BY N MATRIX DLLS 80
C WITH M NOT LESS THAN N. IN THE SPECIAL CASE M=N SYSTEMS OF DLLS 90
C LINEAR EQUATIONS MAY BE SOLVED. DLLS 100
C DLLS 110
C USAGE DLLS 120
C CALL DLLSQ (A,B,M,N,L,X,IPIV,EPS,IER,AUX) DLLS 130
C DLLS 140
C DESCRIPTION OF PARAMETERS DLLS 150
C A - DOUBLE PRECISION M BY N COEFFICIENT MATRIX DLLS 160
C (DESTROYED). DLLS 170
C B - DOUBLE PRECISION M BY L RIGHT HAND SIDE MATRIX DLLS 180
C (DESTROYED). DLLS 190
C M - ROW NUMBER OF MATRICES A AND B. DLLS 200
C N - COLUMN NUMBER OF MATRIX A, ROW NUMBER OF MATRIX X. DLLS 210
C L - COLUMN NUMBER OF MATRICES B AND X. DLLS 220
C X - DOUBLE PRECISION N BY L SOLUTION MATRIX. DLLS 230
C IPIV - INTEGER OUTPUT VECTOR OF DIMENSION N WHICH DLLS 240
C CONTAINS INFORMATIONS ON COLUMN INTERCHANGES DLLS 250
C IN MATRIX A. (SEE REMARK NO.3). DLLS 260
C EPS - SINGLE PRECISION INPUT PARAMETER WHICH SPECIFIES DLLS 270
C A RELATIVE TOLERANCE FOR DETERMINATION OF RANK OF DLLS 280
C MATRIX A. DLLS 290
C IER - A RESULTING ERROR PARAMETER. DLLS 300
C AUX - A DOUBLE PRECISION AUXILIARY STORAGE ARRAY OF DLLS 310
C DIMENSION MAX(2*N,L). ON RETURN FIRST L LOCATIONS DLLS 320
C OF AUX CONTAIN THE RESULTING LEAST SQUARES. DLLS 330
C DLLS 340
C REMARKS DLLS 350
C (1) NO ACTION BESIDES ERROR MESSAGE IER=-2 IN CASE DLLS 360
C M LESS THAN N. DLLS 370
C (2) NO ACTION BESIDES ERROR MESSAGE IER=-1 IN CASE DLLS 380
C OF A ZERO-MATRIX A. DLLS 390
C (3) IF RANK K OF MATRIX A IS FOUND TO BE LESS THAN N BUT DLLS 400
C GREATER THAN 0, THE PROCEDURE RETURNS WITH ERROR CODE DLLS 410
C IER=K INTO CALLING PROGRAM. THE LAST N-K ELEMENTS OF DLLS 420
C VECTOR IPIV DENOTE THE USELESS COLUMNS IN MATRIX A. DLLS 430
C THE REMAINING USEFUL COLUMNS FORM A BASE OF MATRIX A. DLLS 440
C (4) IF THE PROCEDURE WAS SUCCESSFUL, ERROR PARAMETER IER DLLS 450
C IS SET TO 0. DLLS 460
C DLLS 470
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED DLLS 480
C NONE DLLS 490
C DLLS 500
C METHOD DLLS 510
C HOUSEHOLDER TRANSFORMATIONS ARE USED TO TRANSFORM MATRIX A DLLS 520
C TO UPPER TRIANGULAR FORM. AFTER HAVING APPLIED THE SAME DLLS 530
C TRANSFORMATION TO THE RIGHT HAND SIDE MATRIX B, AN DLLS 540
C APPROXIMATE SOLUTION OF THE PROBLEM IS COMPUTED BY DLLS 550
C BACK SUBSTITUTION. FOR REFERENCE, SEE DLLS 560
C G. GOLUB, NUMERICAL METHODS FOR SOLVING LINEAR LEAST DLLS 570
C SQUARES PROBLEMS, NUMERISCHE MATHEMATIK, VOL.7, DLLS 580
C ISS.3 (1965), PP.206-216. DLLS 590
C DLLS 600
C ..................................................................DLLS 610
C DLLS 620
SUBROUTINE DLLSQ(A,B,M,N,L,X,IPIV,EPS,IER,AUX) DLLS 630
C DLLS 640
DIMENSION A(1),B(1),X(1),IPIV(1),AUX(1) DLLS 650
DOUBLE PRECISION A,B,X,AUX,PIV,H,SIG,BETA,TOL DLLS 660
C DLLS 670
C ERROR TEST DLLS 680
IF(M-N)30,1,1 DLLS 690
C DLLS 700
C GENERATION OF INITIAL VECTOR S(K) (K=1,2,...,N) IN STORAGE DLLS 710
C LOCATIONS AUX(K) (K=1,2,...,N) DLLS 720
1 PIV=0.D0 DLLS 730
IEND=0 DLLS 740
DO 4 K=1,N DLLS 750
IPIV(K)=K DLLS 760
H=0.D0 DLLS 770
IST=IEND+1 DLLS 780
IEND=IEND+M DLLS 790
DO 2 I=IST,IEND DLLS 800
2 H=H+A(I)*A(I) DLLS 810
AUX(K)=H DLLS 820
IF(H-PIV)4,4,3 DLLS 830
3 PIV=H DLLS 840
KPIV=K DLLS 850
4 CONTINUE DLLS 860
C DLLS 870
C ERROR TEST DLLS 880
IF(PIV)31,31,5 DLLS 890
C DLLS 900
C DEFINE TOLERANCE FOR CHECKING RANK OF A DLLS 910
5 SIG=DSQRT(PIV) DLLS 920
TOL=SIG*ABS(EPS) DLLS 930
C DLLS 940
C DLLS 950
C DECOMPOSITION LOOP DLLS 960
LM=L*M DLLS 970
IST=-M DLLS 980
DO 21 K=1,N DLLS 990
IST=IST+M+1 DLLS1000
IEND=IST+M-K DLLS1010
I=KPIV-K DLLS1020
IF(I)8,8,6 DLLS1030
C DLLS1040
C INTERCHANGE K-TH COLUMN OF A WITH KPIV-TH IN CASE KPIV.GT.K DLLS1050
6 H=AUX(K) DLLS1060
AUX(K)=AUX(KPIV) DLLS1070
AUX(KPIV)=H DLLS1080
ID=I*M DLLS1090
DO 7 I=IST,IEND DLLS1100
J=I+ID DLLS1110
H=A(I) DLLS1120
A(I)=A(J) DLLS1130
7 A(J)=H DLLS1140
C DLLS1150
C COMPUTATION OF PARAMETER SIG DLLS1160
8 IF(K-1)11,11,9 DLLS1170
9 SIG=0.D0 DLLS1180
DO 10 I=IST,IEND DLLS1190
10 SIG=SIG+A(I)*A(I) DLLS1200
SIG=DSQRT(SIG) DLLS1210
C DLLS1220
C TEST ON SINGULARITY DLLS1230
IF(SIG-TOL)32,32,11 DLLS1240
C DLLS1250
C GENERATE CORRECT SIGN OF PARAMETER SIG DLLS1260
11 H=A(IST) DLLS1270
IF(H)12,13,13 DLLS1280
12 SIG=-SIG DLLS1290
C DLLS1300
C SAVE INTERCHANGE INFORMATION DLLS1310
13 IPIV(KPIV)=IPIV(K) DLLS1320
IPIV(K)=KPIV DLLS1330
C DLLS1340
C GENERATION OF VECTOR UK IN K-TH COLUMN OF MATRIX A AND OF DLLS1350
C PARAMETER BETA DLLS1360
BETA=H+SIG DLLS1370
A(IST)=BETA DLLS1380
BETA=1.D0/(SIG*BETA) DLLS1390
J=N+K DLLS1400
AUX(J)=-SIG DLLS1410
IF(K-N)14,19,19 DLLS1420
C DLLS1430
C TRANSFORMATION OF MATRIX A DLLS1440
14 PIV=0.D0 DLLS1450
ID=0 DLLS1460
JST=K+1 DLLS1470
KPIV=JST DLLS1480
DO 18 J=JST,N DLLS1490
ID=ID+M DLLS1500
H=0.D0 DLLS1510
DO 15 I=IST,IEND DLLS1520
II=I+ID DLLS1530
15 H=H+A(I)*A(II) DLLS1540
H=BETA*H DLLS1550
DO 16 I=IST,IEND DLLS1560
II=I+ID DLLS1570
16 A(II)=A(II)-A(I)*H DLLS1580
C DLLS1590
C UPDATING OF ELEMENT S(J) STORED IN LOCATION AUX(J) DLLS1600
II=IST+ID DLLS1610
H=AUX(J)-A(II)*A(II) DLLS1620
AUX(J)=H DLLS1630
IF(H-PIV)18,18,17 DLLS1640
17 PIV=H DLLS1650
KPIV=J DLLS1660
18 CONTINUE DLLS1670
C DLLS1680
C TRANSFORMATION OF RIGHT HAND SIDE MATRIX B DLLS1690
19 DO 21 J=K,LM,M DLLS1700
H=0.D0 DLLS1710
IEND=J+M-K DLLS1720
II=IST DLLS1730
DO 20 I=J,IEND DLLS1740
H=H+A(II)*B(I) DLLS1750
20 II=II+1 DLLS1760
H=BETA*H DLLS1770
II=IST DLLS1780
DO 21 I=J,IEND DLLS1790
B(I)=B(I)-A(II)*H DLLS1800
21 II=II+1 DLLS1810
C END OF DECOMPOSITION LOOP DLLS1820
C DLLS1830
C DLLS1840
C BACK SUBSTITUTION AND BACK INTERCHANGE DLLS1850
IER=0 DLLS1860
I=N DLLS1870
LN=L*N DLLS1880
PIV=1.D0/AUX(2*N) DLLS1890
DO 22 K=N,LN,N DLLS1900
X(K)=PIV*B(I) DLLS1910
22 I=I+M DLLS1920
IF(N-1)26,26,23 DLLS1930
23 JST=(N-1)*M+N DLLS1940
DO 25 J=2,N DLLS1950
JST=JST-M-1 DLLS1960
K=N+N+1-J DLLS1970
PIV=1.D0/AUX(K) DLLS1980
KST=K-N DLLS1990
ID=IPIV(KST)-KST DLLS2000
IST=2-J DLLS2010
DO 25 K=1,L DLLS2020
H=B(KST) DLLS2030
IST=IST+N DLLS2040
IEND=IST+J-2 DLLS2050
II=JST DLLS2060
DO 24 I=IST,IEND DLLS2070
II=II+M DLLS2080
24 H=H-A(II)*X(I) DLLS2090
I=IST-1 DLLS2100
II=I+ID DLLS2110
X(I)=X(II) DLLS2120
X(II)=PIV*H DLLS2130
25 KST=KST+M DLLS2140
C DLLS2150
C DLLS2160
C COMPUTATION OF LEAST SQUARES DLLS2170
26 IST=N+1 DLLS2180
IEND=0 DLLS2190
DO 29 J=1,L DLLS2200
IEND=IEND+M DLLS2210
H=0.D0 DLLS2220
IF(M-N)29,29,27 DLLS2230
27 DO 28 I=IST,IEND DLLS2240
28 H=H+B(I)*B(I) DLLS2250
IST=IST+M DLLS2260
29 AUX(J)=H DLLS2270
RETURN DLLS2280
C DLLS2290
C ERROR RETURN IN CASE M LESS THAN N DLLS2300
30 IER=-2 DLLS2310
RETURN DLLS2320
C DLLS2330
C ERROR RETURN IN CASE OF ZERO-MATRIX A DLLS2340
31 IER=-1 DLLS2350
RETURN DLLS2360
C DLLS2370
C ERROR RETURN IN CASE OF RANK OF MATRIX A LESS THAN N DLLS2380
32 IER=K-1 DLLS2390
RETURN DLLS2400
END DLLS2410