Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/dqa32.ssp
There are 2 other files named dqa32.ssp in the archive. Click here to see a list.
C DA32 10
C ..................................................................DA32 20
C DA32 30
C SUBROUTINE DQA32 DA32 40
C DA32 50
C PURPOSE DA32 60
C TO COMPUTE INTEGRAL(EXP(-X)*FCT(X)/SQRT(X), SUMMED OVER X DA32 70
C FROM 0 TO INFINITY). DA32 80
C DA32 90
C USAGE DA32 100
C CALL DQA32 (FCT,Y) DA32 110
C PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT DA32 120
C DA32 130
C DESCRIPTION OF PARAMETERS DA32 140
C FCT - THE NAME OF AN EXTERNAL DOUBLE PRECISION FUNCTION DA32 150
C SUBPROGRAM USED. DA32 160
C Y - THE RESULTING DOUBLE PRECISION INTEGRAL VALUE. DA32 170
C DA32 180
C REMARKS DA32 190
C NONE DA32 200
C DA32 210
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED DA32 220
C THE EXTERNAL DOUBLE PRECISION FUNCTION SUBPROGRAM FCT(X) DA32 230
C MUST BE FURNISHED BY THE USER. DA32 240
C DA32 250
C METHOD DA32 260
C EVALUATION IS DONE BY MEANS OF 32-POINT GENERALIZED GAUSS- DA32 270
C LAGUERRE QUADRATURE FORMULA, WHICH INTEGRATES EXACTLY DA32 280
C WHENEVER FCT(X) IS A POLYNOMIAL UP TO DEGREE 63. DA32 290
C FOR REFERENCE, SEE DA32 300
C SHAO/CHEN/FRANK, TABLES OF ZEROS AND GAUSSIAN WEIGHTS OF DA32 310
C CERTAIN ASSOCIATED LAGUERRE POLYNOMIALS AND THE RELATED DA32 320
C GENERALIZED HERMITE POLYNOMIALS, IBM TECHNICAL REPORT DA32 330
C TR00.1100 (MARCH 1964), PP.15-16. DA32 340
C DA32 350
C ..................................................................DA32 360
C DA32 370
SUBROUTINE DQA32(FCT,Y) DA32 380
C DA32 390
C DA32 400
DOUBLE PRECISION X,Y,FCT DA32 410
C DA32 420
X=.11079926894707576D3 DA32 430
Y=.11071413071713886D-27*FCT(X) DA32 440
X=.9791671642606276D2 DA32 450
Y=Y+.33594959802163184D-22*FCT(X) DA32 460
X=.8785611994313352D22 DA32 470
Y=Y+.68422760225114810D-18*FCT(X) DA32 480
X=.7933908652882320D2 DA32 490
Y=Y+.31147812492595276D-14*FCT(X) DA32 500
X=.71868499359551422D2 DA32 510
Y=Y+.50993217982259985D-11*FCT(X) DA32 520
X=.65184426376135782D2 DA32 530
Y=Y+.38582071909299337D-8*FCT(X) DA32 540
X=.59129027934391951D2 DA32 550
Y=Y+.15723595577851821D-5*FCT(X) DA32 560
X=.53597231826148512D2 DA32 570
Y=Y+.38234137666012857D-3*FCT(X) DA32 580
X=.48514583867416048D2 DA32 590
Y=Y+.59657255685597023D-1*FCT(X) DA32 600
X=.43825886369903902D2 DA32 610
Y=Y+.63045091330075628D1*FCT(X) DA32 620
X=.39488797123368127D2 DA32 630
Y=Y+.47037694213516382D3*FCT(X) DA32 640
X=.35469961396173283D2 DA32 650
Y=Y+.25601867826448761D5*FCT(X) DA32 660
X=.31742543790616606D2 DA32 670
Y=Y+.10437247453181695D7*FCT(X) DA32 680
X=.28284583194970531D2 DA32 690
Y=Y+.32566814614194407D8*FCT(X) DA32 700
X=.25077856544198053D2 DA32 710
Y=Y+.7918355533895448D9*FCT(X) DA32 720
X=.22107070382206007D2 DA32 730
Y=Y+.15230434500290903D11*FCT(X) DA32 740
X=.19359271087268714D2 DA32 750
Y=Y+.23472334846430987D12*FCT(X) DA32 760
X=.16823405362953694D2 DA32 770
Y=Y+.29302506329522187D13*FCT(X) DA32 780
X=.14489986690780274D2 DA32 790
Y=Y+.29910658734544941D14*FCT(X) DA32 800
X=.12350838217714770D2 DA32 810
Y=Y+.25166805020623692D15*FCT(X) DA32 820
X=.10398891905552624D2 DA32 830
Y=Y+.17576998461700718D16*FCT(X) DA32 840
X=.8628029857405929D1 DA32 850
Y=Y+.10251858271572549D17*FCT(X) DA32 860
X=.70329577982838936D1 DA32 870
Y=Y+.50196739702612497D17*FCT(X) DA32 880
X=.56091034574961513D1 DA32 890
Y=Y+.20726581990151553D18*FCT(X) DA32 900
X=.43525345293301410D1 DA32 910
Y=Y+.7245173957068918D18*FCT(X) DA32 920
X=.32598922564569419D1 DA32 930
Y=Y+.21512081019758274D19*FCT(X) DA32 940
X=.23283376682103970D1 DA32 950
Y=Y+.54406257907377837D19*FCT(X) DA32 960
X=.15555082314789380D1 DA32 970
Y=Y+.11747996392819887D20*FCT(X) DA32 980
X=.9394832145007343D0 DA32 990
Y=Y+.21699669861237368D20*FCT(X) DA321000
X=.47875647727748885D0 DA321010
Y=Y+.34337168469816740D20*FCT(X) DA321020
X=.17221572414539558D0 DA321030
Y=Y+.46598957212535609D20*FCT(X) DA321040
X=.19127510968446856D-1 DA321050
Y=Y+.54275484988260796D20*FCT(X) DA321060
Y=Y*1.D-20
RETURN DA321070
END DA321080