Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/dql24.ssp
There are 2 other files named dql24.ssp in the archive. Click here to see a list.
C DL24 10
C ..................................................................DL24 20
C DL24 30
C SUBROUTINE DQL24 DL24 40
C DL24 50
C PURPOSE DL24 60
C TO COMPUTE INTEGRAL(EXP(-X)*FCT(X), SUMMED OVER X DL24 70
C FROM 0 TO INFINITY). DL24 80
C DL24 90
C USAGE DL24 100
C CALL DQL24 (FCT,Y) DL24 110
C PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT DL24 120
C DL24 130
C DESCRIPTION OF PARAMETERS DL24 140
C FCT - THE NAME OF AN EXTERNAL DOUBLE PRECISION FUNCTION DL24 150
C SUBPROGRAM USED. DL24 160
C Y - THE RESULTING DOUBLE PRECISION INTEGRAL VALUE. DL24 170
C DL24 180
C REMARKS DL24 190
C NONE DL24 200
C DL24 210
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED DL24 220
C THE EXTERNAL DOUBLE PRECISION FUNCTION SUBPROGRAM FCT(X) DL24 230
C MUST BE FURNISHED BY THE USER. DL24 240
C DL24 250
C METHOD DL24 260
C EVALUATION IS DONE BY MEANS OF 24-POINT GAUSSIAN-LAGUERRE DL24 270
C QUADRATURE FORMULA, WHICH INTEGRATES EXACTLY, DL24 280
C WHENEVER FCT(X) IS A POLYNOMIAL UP TO DEGREE 47. DL24 290
C FOR REFERENCE, SEE DL24 300
C SHAO/CHEN/FRANK, TABLES OF ZEROS AND GAUSSIAN WEIGHTS OF DL24 310
C CERTAIN ASSOCIATED LAGUERRE POLYNOMIALS AND THE RELATED DL24 320
C GENERALIZED HERMITE POLYNOMIALS, IBM TECHNICAL REPORT DL24 330
C TR00.1100 (MARCH 1964), PP.24-25. DL24 340
C DL24 350
C ..................................................................DL24 360
C DL24 370
SUBROUTINE DQL24(FCT,Y) DL24 380
C DL24 390
C DL24 400
DOUBLE PRECISION X,Y,FCT DL24 410
C DL24 420
X=.8149827923394889D2 DL24 430
Y=.55753457883283568D-34*FCT(X) DL24 440
X=.69962240035105030D2 DL24 450
Y=Y+.40883015936806578D-29*FCT(X) DL24 460
X=.61058531447218762D2 DL24 470
Y=Y+.24518188458784027D-25*FCT(X) DL24 480
X=.53608574544695070D2 DL24 490
Y=Y+.36057658645529590D-22*FCT(X) DL24 500
X=.47153106445156323D2 DL24 510
Y=Y+.20105174645555035D-19*FCT(X) DL24 520
X=.41451720484870767D2 DL24 530
Y=Y+.53501888130100376D-17*FCT(X) DL24 540
X=.36358405801651622D2 DL24 550
Y=Y+.7819800382459448D-15*FCT(X) DL24 560
X=.31776041352374723D2 DL24 570
Y=Y+.68941810529580857D-13*FCT(X) DL24 580
X=.27635937174332717D2 DL24 590
Y=Y+.39177365150584514D-11*FCT(X) DL24 600
X=.23887329848169733D2 DL24 610
Y=Y+.15070082262925849D-9*FCT(X) DL24 620
X=.20491460082616425D2 DL24 630
Y=Y+.40728589875499997D-8*FCT(X) DL24 640
X=.17417992646508979D2 DL24 650
Y=Y+.7960812959133630D-7*FCT(X) DL24 660
X=.14642732289596674D2 DL24 670
Y=Y+.11513158127372799D-5*FCT(X) DL24 680
X=.12146102711729766D2 DL24 690
Y=Y+.12544721977993333D-4*FCT(X) DL24 700
X=.9912098015077706D1 DL24 710
Y=Y+.10446121465927518D-3*FCT(X) DL24 720
X=.7927539247172152D1 DL24 730
Y=Y+.67216256409354789D-3*FCT(X) DL24 740
X=.61815351187367654D1 DL24 750
Y=Y+.33693490584783036D-2*FCT(X) DL24 760
X=.46650837034671708D1 DL24 770
Y=Y+.13226019405120157D-1*FCT(X) DL24 780
X=.33707742642089977D1 DL24 790
Y=Y+.40732478151408646D-1*FCT(X) DL24 800
X=.22925620586321903D1 DL24 810
Y=Y+.9816627262991889D-1*FCT(X) DL24 820
X=.14255975908036131D1 DL24 830
Y=Y+.18332268897777802D0*FCT(X) DL24 840
X=.7660969055459366D0 DL24 850
Y=Y+.25880670727286980D0*FCT(X) DL24 860
X=.31123914619848373D0 DL24 870
Y=Y+.25877410751742390D0*FCT(X) DL24 880
X=.59019852181507977D-1 DL24 890
Y=Y+.14281197333478185D0*FCT(X) DL24 900
RETURN DL24 910
END DL24 920