Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/dql32.ssp
There are 2 other files named dql32.ssp in the archive. Click here to see a list.
C DL32 10
C ..................................................................DL32 20
C DL32 30
C SUBROUTINE DQL32 DL32 40
C DL32 50
C PURPOSE DL32 60
C TO COMPUTE INTEGRAL(EXP(-X)*FCT(X), SUMMED OVER X DL32 70
C FROM 0 TO INFINITY). DL32 80
C DL32 90
C USAGE DL32 100
C CALL DQL32 (FCT,Y) DL32 110
C PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT DL32 120
C DL32 130
C DESCRIPTION OF PARAMETERS DL32 140
C FCT - THE NAME OF AN EXTERNAL DOUBLE PRECISION FUNCTION DL32 150
C SUBPROGRAM USED. DL32 160
C Y - THE RESULTING DOUBLE PRECISION INTEGRAL VALUE. DL32 170
C DL32 180
C REMARKS DL32 190
C NONE DL32 200
C DL32 210
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED DL32 220
C THE EXTERNAL DOUBLE PRECISION FUNCTION SUBPROGRAM FCT(X) DL32 230
C MUST BE FURNISHED BY THE USER. DL32 240
C DL32 250
C METHOD DL32 260
C EVALUATION IS DONE BY MEANS OF 32-POINT GAUSSIAN-LAGUERRE DL32 270
C QUADRATURE FORMULA, WHICH INTEGRATES EXACTLY, DL32 280
C WHENEVER FCT(X) IS A POLYNOMIAL UP TO DEGREE 63. DL32 290
C FOR REFERENCE, SEE DL32 300
C SHAO/CHEN/FRANK, TABLES OF ZEROS AND GAUSSIAN WEIGHTS OF DL32 310
C CERTAIN ASSOCIATED LAGUERRE POLYNOMIALS AND THE RELATED DL32 320
C GENERALIZED HERMITE POLYNOMIALS, IBM TECHNICAL REPORT DL32 330
C TR00.1100 (MARCH 1964), PP.24-25. DL32 340
C DL32 350
C ..................................................................DL32 360
C DL32 370
SUBROUTINE DQL32(FCT,Y) DL32 380
C DL32 390
C DL32 400
DOUBLE PRECISION X,Y,FCT DL32 410
C DL32 420
X=.11175139809793770D3 DL32 430
Y=.45105361938989742D-27*FCT(X) DL32 440
X=.9882954286828397D2 DL32 450
Y=Y+.13386169421062563D-21*FCT(X) DL32 460
X=.8873534041789240D2 DL32 470
Y=Y+.26715112192401370D-17*FCT(X) DL32 480
X=.8018744697791352D2 DL32 490
Y=Y+.11922487600982224D-13*FCT(X) DL32 500
X=.7268762809066271D2 DL32 510
Y=Y+.19133754944542243D-10*FCT(X) DL32 520
X=.65975377287935053D2 DL32 530
Y=Y+.14185605454630369D-7*FCT(X) DL32 540
X=.59892509162134018D2 DL32 550
Y=Y+.56612941303973594D-5*FCT(X) DL32 560
X=.54333721333396907D2 DL32 570
Y=Y+.13469825866373952D-2*FCT(X) DL32 580
X=.49224394987308639D2 DL32 590
Y=Y+.20544296737880454D0*FCT(X) DL32 600
X=.44509207995754938D2 DL32 610
Y=Y+.21197922901636186D2*FCT(X) DL32 620
X=.40145719771539442D2 DL32 630
Y=Y+.15421338333938234D4*FCT(X) DL32 640
X=.36100494805751974D2 DL32 650
Y=Y+.8171823443420719D5*FCT(X) DL32 660
X=.32346629153964737D2 DL32 670
Y=Y+.32378016577292665D7*FCT(X) DL32 680
X=.28862101816323475D2 DL32 690
Y=Y+.9799379288727094D8*FCT(X) DL32 700
X=.25628636022459248D2 DL32 710
Y=Y+.23058994918913361D10*FCT(X) DL32 720
X=.22630889013196774D2 DL32 730
Y=Y+.42813829710409289D11*FCT(X) DL32 740
X=.19855860940336055D2 DL32 750
Y=Y+.63506022266258067D12*FCT(X) DL32 760
X=.17292454336715315D2 DL32 770
Y=Y+.7604567879120781D13*FCT(X) DL32 780
X=.14931139755522557D2 DL32 790
Y=Y+.7416404578667552D14*FCT(X) DL32 800
X=.12763697986742725D2 DL32 810
Y=Y+.59345416128686329D15*FCT(X) DL32 820
X=.10783018632539972D2 DL32 830
Y=Y+.39203419679879472D16*FCT(X) DL32 840
X=.8982940924212596D1 DL32 850
Y=Y+.21486491880136419D17*FCT(X) DL32 860
X=.7358126733186241D1 DL32 870
Y=Y+.9808033066149551D17*FCT(X) DL32 880
X=.59039585041742439D1 DL32 890
Y=Y+.37388162946115248D18*FCT(X) DL32 900
X=.46164567697497674D1 DL32 910
Y=Y+.11918214834838557D19*FCT(X) DL32 920
X=.34922132730219945D1 DL32 930
Y=Y+.31760912509175070D19*FCT(X) DL32 940
X=.25283367064257949D1 DL32 950
Y=Y+.70578623865717442D19*FCT(X) DL32 960
X=.17224087764446454D1 DL32 970
Y=Y+.12998378628607176D20*FCT(X) DL32 980
X=.10724487538178176D1 DL32 990
Y=Y+.19590333597288104D20*FCT(X) DL321000
X=.57688462930188643D0 DL321010
Y=Y+.23521322966984801D20*FCT(X) DL321020
X=.23452610951961854D0 DL321030
Y=Y+.21044310793881323D20*FCT(X) DL321040
X=.44489365833267018D-1 DL321050
Y=Y+.10921834195238497D20*FCT(X) DL321060
Y=Y*1.D-20
RETURN DL321070
END DL321080