Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/dql8.ssp
There are 2 other files named dql8.ssp in the archive. Click here to see a list.
C DQL8 10
C ..................................................................DQL8 20
C DQL8 30
C SUBROUTINE DQL8 DQL8 40
C DQL8 50
C PURPOSE DQL8 60
C TO COMPUTE INTEGRAL(EXP(-X)*FCT(X), SUMMED OVER X DQL8 70
C FROM 0 TO INFINITY). DQL8 80
C DQL8 90
C USAGE DQL8 100
C CALL DQL8 (FCT,Y) DQL8 110
C PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT DQL8 120
C DQL8 130
C DESCRIPTION OF PARAMETERS DQL8 140
C FCT - THE NAME OF AN EXTERNAL DOUBLE PRECISION FUNCTION DQL8 150
C SUBPROGRAM USED. DQL8 160
C Y - THE RESULTING DOUBLE PRECISION INTEGRAL VALUE. DQL8 170
C DQL8 180
C REMARKS DQL8 190
C NONE DQL8 200
C DQL8 210
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED DQL8 220
C THE EXTERNAL DOUBLE PRECISION FUNCTION SUBPROGRAM FCT(X) DQL8 230
C MUST BE FURNISHED BY THE USER. DQL8 240
C DQL8 250
C METHOD DQL8 260
C EVALUATION IS DONE BY MEANS OF 8-POINT GAUSSIAN-LAGUERRE DQL8 270
C QUADRATURE FORMULA, WHICH INTEGRATES EXACTLY, DQL8 280
C WHENEVER FCT(X) IS A POLYNOMIAL UP TO DEGREE 15. DQL8 290
C FOR REFERENCE, SEE DQL8 300
C SHAO/CHEN/FRANK, TABLES OF ZEROS AND GAUSSIAN WEIGHTS OF DQL8 310
C CERTAIN ASSOCIATED LAGUERRE POLYNOMIALS AND THE RELATED DQL8 320
C GENERALIZED HERMITE POLYNOMIALS, IBM TECHNICAL REPORT DQL8 330
C TR00.1100 (MARCH 1964), PP.24-25. DQL8 340
C DQL8 350
C ..................................................................DQL8 360
C DQL8 370
SUBROUTINE DQL8(FCT,Y) DQL8 380
C DQL8 390
C DQL8 400
DOUBLE PRECISION X,Y,FCT DQL8 410
C DQL8 420
X=.22863131736889264D2 DQL8 430
Y=.10480011748715104D-8*FCT(X) DQL8 440
X=.15740678641278005D2 DQL8 450
Y=Y+.8485746716272532D-6*FCT(X) DQL8 460
X=.10758516010180995D2 DQL8 470
Y=Y+.9076508773358213D-4*FCT(X) DQL8 480
X=.70459054023934657D1 DQL8 490
Y=Y+.27945362352256725D-2*FCT(X) DQL8 500
X=.42667001702876588D1 DQL8 510
Y=Y+.33343492261215652D-1*FCT(X) DQL8 520
X=.22510866298661307D1 DQL8 530
Y=Y+.17579498663717181D0*FCT(X) DQL8 540
X=.9037017767993799D0 DQL8 550
Y=Y+.41878678081434296D0*FCT(X) DQL8 560
X=.17027963230510100D0 DQL8 570
Y=Y+.36918858934163753D0*FCT(X) DQL8 580
RETURN DQL8 590
END DQL8 600