Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/hep.ssp
There are 2 other files named hep.ssp in the archive. Click here to see a list.
C HEP 10
C ..................................................................HEP 20
C HEP 30
C SUBROUTINE HEP HEP 40
C HEP 50
C PURPOSE HEP 60
C COMPUTE THE VALUES OF THE HERMITE POLYNOMIALS H(N,X) HEP 70
C FOR ARGUMENT VALUE X AND ORDERS 0 UP TO N. HEP 80
C HEP 90
C USAGE HEP 100
C CALL HEP(Y,X,N) HEP 110
C HEP 120
C DESCRIPTION OF PARAMETERS HEP 130
C Y - RESULT VECTOR OF DIMENSION N+1 CONTAINING THE VALUESHEP 140
C OF HERMITE POLYNOMIALS OF ORDER 0 UP TO N HEP 150
C FOR GIVEN ARGUMENT X. HEP 160
C VALUES ARE ORDERED FROM LOW TO HIGH ORDER HEP 170
C X - ARGUMENT OF HERMITE POLYNOMIAL HEP 180
C N - ORDER OF HERMITE POLYNOMIAL HEP 190
C HEP 200
C REMARKS HEP 210
C N LESS THAN 0 IS TREATED AS IF N WERE 0 HEP 220
C HEP 230
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED HEP 240
C NONE HEP 250
C HEP 260
C METHOD HEP 270
C EVALUATION IS BASED ON THE RECURRENCE EQUATION FOR HEP 280
C HERMITE POLYNOMIALS H(N,X) HEP 290
C H(N+1,X)=2*(X*H(N,X)-N*H(N-1,X)) HEP 300
C WHERE THE FIRST TERM IN BRACKETS IS THE INDEX, HEP 310
C THE SECOND IS THE ARGUMENT. HEP 320
C STARTING VALUES ARE H(0,X)=1, H(1,X)=2*X. HEP 330
C HEP 340
C ..................................................................HEP 350
C HEP 360
SUBROUTINE HEP(Y,X,N) HEP 370
C HEP 380
DIMENSION Y(1) HEP 390
C HEP 400
C TEST OF ORDER HEP 410
Y(1)=1. HEP 420
IF(N)1,1,2 HEP 430
1 RETURN HEP 440
C HEP 450
2 Y(2)=X+X HEP 460
IF(N-1)1,1,3 HEP 470
C HEP 480
3 DO 4 I=2,N HEP 490
F=X*Y(I)-FLOAT(I-1)*Y(I-1) HEP 500
4 Y(I+1)=F+F HEP 510
RETURN HEP 520
END HEP 530