Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/rtmi.ssp
There are 2 other files named rtmi.ssp in the archive. Click here to see a list.
C RTMI 10
C ..................................................................RTMI 20
C RTMI 30
C SUBROUTINE RTMI RTMI 40
C RTMI 50
C PURPOSE RTMI 60
C TO SOLVE GENERAL NONLINEAR EQUATIONS OF THE FORM FCT(X)=0 RTMI 70
C BY MEANS OF MUELLER-S ITERATION METHOD. RTMI 80
C RTMI 90
C USAGE RTMI 100
C CALL RTMI (X,F,FCT,XLI,XRI,EPS,IEND,IER) RTMI 110
C PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT. RTMI 120
C RTMI 130
C DESCRIPTION OF PARAMETERS RTMI 140
C X - RESULTANT ROOT OF EQUATION FCT(X)=0. RTMI 150
C F - RESULTANT FUNCTION VALUE AT ROOT X. RTMI 160
C FCT - NAME OF THE EXTERNAL FUNCTION SUBPROGRAM USED. RTMI 170
C XLI - INPUT VALUE WHICH SPECIFIES THE INITIAL LEFT BOUND RTMI 180
C OF THE ROOT X. RTMI 190
C XRI - INPUT VALUE WHICH SPECIFIES THE INITIAL RIGHT BOUNDRTMI 200
C OF THE ROOT X. RTMI 210
C EPS - INPUT VALUE WHICH SPECIFIES THE UPPER BOUND OF THE RTMI 220
C ERROR OF RESULT X. RTMI 230
C IEND - MAXIMUM NUMBER OF ITERATION STEPS SPECIFIED. RTMI 240
C IER - RESULTANT ERROR PARAMETER CODED AS FOLLOWS RTMI 250
C IER=0 - NO ERROR, RTMI 260
C IER=1 - NO CONVERGENCE AFTER IEND ITERATION STEPS RTMI 270
C FOLLOWED BY IEND SUCCESSIVE STEPS OF RTMI 280
C BISECTION, RTMI 290
C IER=2 - BASIC ASSUMPTION FCT(XLI)*FCT(XRI) LESS RTMI 300
C THAN OR EQUAL TO ZERO IS NOT SATISFIED. RTMI 310
C RTMI 320
C REMARKS RTMI 330
C THE PROCEDURE ASSUMES THAT FUNCTION VALUES AT INITIAL RTMI 340
C BOUNDS XLI AND XRI HAVE NOT THE SAME SIGN. IF THIS BASIC RTMI 350
C ASSUMPTION IS NOT SATISFIED BY INPUT VALUES XLI AND XRI, THERTMI 360
C PROCEDURE IS BYPASSED AND GIVES THE ERROR MESSAGE IER=2. RTMI 370
C RTMI 380
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED RTMI 390
C THE EXTERNAL FUNCTION SUBPROGRAM FCT(X) MUST BE FURNISHED RTMI 400
C BY THE USER. RTMI 410
C RTMI 420
C METHOD RTMI 430
C SOLUTION OF EQUATION FCT(X)=0 IS DONE BY MEANS OF MUELLER-S RTMI 440
C ITERATION METHOD OF SUCCESSIVE BISECTIONS AND INVERSE RTMI 450
C PARABOLIC INTERPOLATION, WHICH STARTS AT THE INITIAL BOUNDS RTMI 460
C XLI AND XRI. CONVERGENCE IS QUADRATIC IF THE DERIVATIVE OF RTMI 470
C FCT(X) AT ROOT X IS NOT EQUAL TO ZERO. ONE ITERATION STEP RTMI 480
C REQUIRES TWO EVALUATIONS OF FCT(X). FOR TEST ON SATISFACTORYRTMI 490
C ACCURACY SEE FORMULAE (3,4) OF MATHEMATICAL DESCRIPTION. RTMI 500
C FOR REFERENCE, SEE G. K. KRISTIANSEN, ZERO OF ARBITRARY RTMI 510
C FUNCTION, BIT, VOL. 3 (1963), PP.205-206. RTMI 520
C RTMI 530
C ..................................................................RTMI 540
C RTMI 550
SUBROUTINE RTMI(X,F,FCT,XLI,XRI,EPS,IEND,IER) RTMI 560
C RTMI 570
C RTMI 580
C PREPARE ITERATION RTMI 590
IER=0 RTMI 600
XL=XLI RTMI 610
XR=XRI RTMI 620
X=XL RTMI 630
TOL=X RTMI 640
F=FCT(TOL) RTMI 650
IF(F)1,16,1 RTMI 660
1 FL=F RTMI 670
X=XR RTMI 680
TOL=X RTMI 690
F=FCT(TOL) RTMI 700
IF(F)2,16,2 RTMI 710
2 FR=F RTMI 720
IF(SIGN(1.,FL)+SIGN(1.,FR))25,3,25 RTMI 730
C RTMI 740
C BASIC ASSUMPTION FL*FR LESS THAN 0 IS SATISFIED. RTMI 750
C GENERATE TOLERANCE FOR FUNCTION VALUES. RTMI 760
3 I=0 RTMI 770
TOLF=100.*EPS RTMI 780
C RTMI 790
C RTMI 800
C START ITERATION LOOP RTMI 810
4 I=I+1 RTMI 820
C RTMI 830
C START BISECTION LOOP RTMI 840
DO 13 K=1,IEND RTMI 850
X=.5*(XL+XR) RTMI 860
TOL=X RTMI 870
F=FCT(TOL) RTMI 880
IF(F)5,16,5 RTMI 890
5 IF(SIGN(1.,F)+SIGN(1.,FR))7,6,7 RTMI 900
C RTMI 910
C INTERCHANGE XL AND XR IN ORDER TO GET THE SAME SIGN IN F AND FR RTMI 920
6 TOL=XL RTMI 930
XL=XR RTMI 940
XR=TOL RTMI 950
TOL=FL RTMI 960
FL=FR RTMI 970
FR=TOL RTMI 980
7 TOL=F-FL RTMI 990
A=F*TOL RTMI1000
A=A+A RTMI1010
IF(A-FR*(FR-FL))8,9,9 RTMI1020
8 IF(I-IEND)17,17,9 RTMI1030
9 XR=X RTMI1040
FR=F RTMI1050
C RTMI1060
C TEST ON SATISFACTORY ACCURACY IN BISECTION LOOP RTMI1070
TOL=EPS RTMI1080
A=ABS(XR) RTMI1090
IF(A-1.)11,11,10 RTMI1100
10 TOL=TOL*A RTMI1110
11 IF(ABS(XR-XL)-TOL)12,12,13 RTMI1120
12 IF(ABS(FR-FL)-TOLF)14,14,13 RTMI1130
13 CONTINUE RTMI1140
C END OF BISECTION LOOP RTMI1150
C RTMI1160
C NO CONVERGENCE AFTER IEND ITERATION STEPS FOLLOWED BY IEND RTMI1170
C SUCCESSIVE STEPS OF BISECTION OR STEADILY INCREASING FUNCTION RTMI1180
C VALUES AT RIGHT BOUNDS. ERROR RETURN. RTMI1190
IER=1 RTMI1200
14 IF(ABS(FR)-ABS(FL))16,16,15 RTMI1210
15 X=XL RTMI1220
F=FL RTMI1230
16 RETURN RTMI1240
C RTMI1250
C COMPUTATION OF ITERATED X-VALUE BY INVERSE PARABOLIC INTERPOLATIONRTMI1260
17 A=FR-F RTMI1270
DX=(X-XL)*FL*(1.+F*(A-TOL)/(A*(FR-FL)))/TOL RTMI1280
XM=X RTMI1290
FM=F RTMI1300
X=XL-DX RTMI1310
TOL=X RTMI1320
F=FCT(TOL) RTMI1330
IF(F)18,16,18 RTMI1340
C RTMI1350
C TEST ON SATISFACTORY ACCURACY IN ITERATION LOOP RTMI1360
18 TOL=EPS RTMI1370
A=ABS(X) RTMI1380
IF(A-1.)20,20,19 RTMI1390
19 TOL=TOL*A RTMI1400
20 IF(ABS(DX)-TOL)21,21,22 RTMI1410
21 IF(ABS(F)-TOLF)16,16,22 RTMI1420
C RTMI1430
C PREPARATION OF NEXT BISECTION LOOP RTMI1440
22 IF(SIGN(1.,F)+SIGN(1.,FL))24,23,24 RTMI1450
23 XR=X RTMI1460
FR=F RTMI1470
GO TO 4 RTMI1480
24 XL=X RTMI1490
FL=F RTMI1500
XR=XM RTMI1510
FR=FM RTMI1520
GO TO 4 RTMI1530
C END OF ITERATION LOOP RTMI1540
C RTMI1550
C RTMI1560
C ERROR RETURN IN CASE OF WRONG INPUT DATA RTMI1570
25 IER=2 RTMI1580
RETURN RTMI1590
END RTMI1600