Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/sinv.ssp
There are 2 other files named sinv.ssp in the archive. Click here to see a list.
C SINV 10
C ..................................................................SINV 20
C SINV 30
C SUBROUTINE SINV SINV 40
C SINV 50
C PURPOSE SINV 60
C INVERT A GIVEN SYMMETRIC POSITIVE DEFINITE MATRIX SINV 70
C SINV 80
C USAGE SINV 90
C CALL SINV(A,N,EPS,IER) SINV 100
C SINV 110
C DESCRIPTION OF PARAMETERS SINV 120
C A - UPPER TRIANGULAR PART OF THE GIVEN SYMMETRIC SINV 130
C POSITIVE DEFINITE N BY N COEFFICIENT MATRIX. SINV 140
C ON RETURN A CONTAINS THE RESULTANT UPPER SINV 150
C TRIANGULAR MATRIX. SINV 160
C N - THE NUMBER OF ROWS (COLUMNS) IN GIVEN MATRIX. SINV 170
C EPS - AN INPUT CONSTANT WHICH IS USED AS RELATIVE SINV 180
C TOLERANCE FOR TEST ON LOSS OF SIGNIFICANCE. SINV 190
C IER - RESULTING ERROR PARAMETER CODED AS FOLLOWS SINV 200
C IER=0 - NO ERROR SINV 210
C IER=-1 - NO RESULT BECAUSE OF WRONG INPUT PARAME- SINV 220
C TER N OR BECAUSE SOME RADICAND IS NON- SINV 230
C POSITIVE (MATRIX A IS NOT POSITIVE SINV 240
C DEFINITE, POSSIBLY DUE TO LOSS OF SIGNI- SINV 250
C FICANCE) SINV 260
C IER=K - WARNING WHICH INDICATES LOSS OF SIGNIFI- SINV 270
C CANCE. THE RADICAND FORMED AT FACTORIZA- SINV 280
C TION STEP K+1 WAS STILL POSITIVE BUT NO SINV 290
C LONGER GREATER THAN ABS(EPS*A(K+1,K+1)). SINV 300
C SINV 310
C REMARKS SINV 320
C THE UPPER TRIANGULAR PART OF GIVEN MATRIX IS ASSUMED TO BE SINV 330
C STORED COLUMNWISE IN N*(N+1)/2 SUCCESSIVE STORAGE LOCATIONS.SINV 340
C IN THE SAME STORAGE LOCATIONS THE RESULTING UPPER TRIANGU- SINV 350
C LAR MATRIX IS STORED COLUMNWISE TOO. SINV 360
C THE PROCEDURE GIVES RESULTS IF N IS GREATER THAN 0 AND ALL SINV 370
C CALCULATED RADICANDS ARE POSITIVE. SINV 380
C SINV 390
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED SINV 400
C MFSD SINV 410
C SINV 420
C METHOD SINV 430
C SOLUTION IS DONE USING THE FACTORIZATION BY SUBROUTINE MFSD.SINV 440
C SINV 450
C ..................................................................SINV 460
C SINV 470
SUBROUTINE SINV(A,N,EPS,IER) SINV 480
C SINV 490
C SINV 500
DIMENSION A(1) SINV 510
DOUBLE PRECISION DIN,WORK SINV 520
C SINV 530
C FACTORIZE GIVEN MATRIX BY MEANS OF SUBROUTINE MFSD SINV 540
C A = TRANSPOSE(T) * T SINV 550
CALL MFSD(A,N,EPS,IER) SINV 560
IF(IER) 9,1,1 SINV 570
C SINV 580
C INVERT UPPER TRIANGULAR MATRIX T SINV 590
C PREPARE INVERSION-LOOP SINV 600
1 IPIV=N*(N+1)/2 SINV 610
IND=IPIV SINV 620
C SINV 630
C INITIALIZE INVERSION-LOOP SINV 640
DO 6 I=1,N SINV 650
DIN=1.D0/DBLE(A(IPIV)) SINV 660
A(IPIV)=DIN SINV 670
MIN=N SINV 680
KEND=I-1 SINV 690
LANF=N-KEND SINV 700
IF(KEND) 5,5,2 SINV 710
2 J=IND SINV 720
C SINV 730
C INITIALIZE ROW-LOOP SINV 740
DO 4 K=1,KEND SINV 750
WORK=0.D0 SINV 760
MIN=MIN-1 SINV 770
LHOR=IPIV SINV 780
LVER=J SINV 790
C SINV 800
C START INNER LOOP SINV 810
DO 3 L=LANF,MIN SINV 820
LVER=LVER+1 SINV 830
LHOR=LHOR+L SINV 840
3 WORK=WORK+DBLE(A(LVER)*A(LHOR)) SINV 850
C END OF INNER LOOP SINV 860
C SINV 870
A(J)=-WORK*DIN SINV 880
4 J=J-MIN SINV 890
C END OF ROW-LOOP SINV 900
C SINV 910
5 IPIV=IPIV-MIN SINV 920
6 IND=IND-1 SINV 930
C END OF INVERSION-LOOP SINV 940
C SINV 950
C CALCULATE INVERSE(A) BY MEANS OF INVERSE(T) SINV 960
C INVERSE(A) = INVERSE(T) * TRANSPOSE(INVERSE(T)) SINV 970
C INITIALIZE MULTIPLICATION-LOOP SINV 980
DO 8 I=1,N SINV 990
IPIV=IPIV+I SINV1000
J=IPIV SINV1010
C SINV1020
C INITIALIZE ROW-LOOP SINV1030
DO 8 K=I,N SINV1040
WORK=0.D0 SINV1050
LHOR=J SINV1060
C SINV1070
C START INNER LOOP SINV1080
DO 7 L=K,N SINV1090
LVER=LHOR+K-I SINV1100
WORK=WORK+DBLE(A(LHOR)*A(LVER)) SINV1110
7 LHOR=LHOR+L SINV1120
C END OF INNER LOOP SINV1130
C SINV1140
A(J)=WORK SINV1150
8 J=J+K SINV1160
C END OF ROW- AND MULTIPLICATION-LOOP SINV1170
C SINV1180
9 RETURN SINV1190
END SINV1200