Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/stprg.ssp
There are 2 other files named stprg.ssp in the archive. Click here to see a list.
C STPR 10
C ..................................................................STPR 20
C STPR 30
C SUBROUTINE STPRG STPR 40
C STPR 50
C PURPOSE STPR 60
C TO PERFORM A STEPWISE MULTIPLE REGRESSION ANALYSIS FOR A STPR 70
C DEPENDENT VARIABLE AND A SET OF INDEPENDENT VARIABLES. AT STPR 80
C EACH STEP, THE VARIABLE ENTERED INTO THE REGRESSION EQUATIONSTPR 90
C IS THAT WHICH EXPLAINS THE GREATEST AMOUNT OF VARIANCE STPR 100
C BETWEEN IT AND THE DEPENDENT VARIABLE (I.E. THE VARIABLE STPR 110
C WITH THE HIGHEST PARTIAL CORRELATION WITH THE DEPENDENT STPR 120
C VARIABLE). ANY VARIABLE CAN BE DESIGNATED AS THE DEPENDENT STPR 130
C VARIABLE. ANY INDEPENDENT VARIABLE CAN BE FORCED INTO OR STPR 140
C DELETED FROM THE REGRESSION EQUATION, IRRESPECTIVE OF ITS STPR 150
C CONTRIBUTION TO THE EQUATION. STPR 160
C STPR 170
C USAGE STPR 180
C CALL STPRG (M,N,D,XBAR,IDX,PCT,NSTEP,ANS,L,B,S,T,LL,IER) STPR 190
C STPR 200
C DESCRIPTION OF PARAMETERS STPR 210
C M - TOTAL NUMBER OF VARIABLES IN DATA MATRIX STPR 220
C N - NUMBER OF OBSERVATIONS STPR 230
C D - INPUT MATRIX (M X M) OF SUMS OF CROSS-PRODUCTS OF STPR 240
C DEVIATIONS FROM MEAN. THIS MATRIX WILL BE DESTROYED.STPR 250
C XBAR - INPUT VECTOR OF LENGTH M OF MEANS STPR 260
C IDX - INPUT VECTOR OF LENGTH M HAVING ONE OF THE FOLLOWING STPR 270
C CODES FOR EACH VARIABLE. STPR 280
C 0 - INDEPENDENT VARIABLE AVAILABLE FOR SELECTION STPR 290
C 1 - INDEPENDENT VARIABLE TO BE FORCED INTO THE STPR 300
C REGRESSION EQUATION STPR 310
C 2 - VARIABLE NOT TO BE CONSIDERED IN THE EQUATION STPR 320
C 3 - DEPENDENT VARIABLE STPR 330
C THIS VECTOR WILL BE DESTROYED STPR 340
C PCT - A CONSTANT VALUE INDICATING THE PROPORTION OF THE STPR 350
C TOTAL VARIANCE TO BE EXPLAINED BY ANY INDEPENDENT STPR 360
C VARIABLE. THOSE INDEPENDENT VARIABLES WHICH FALL STPR 370
C BELOW THIS PROPORTION WILL NOT ENTER THE REGRESSION STPR 380
C EQUATION. TO ENSURE THAT ALL VARIABLES ENTER THE STPR 390
C EQUATION, SET PCT = 0.0. STPR 400
C NSTEP- OUTPUT VECTOR OF LENGTH 5 CONTAINING THE FOLLOWING STPR 410
C INFORMATION STPR 420
C NSTEP(1)- THE NUMBER OF THE DEPENDENT VARIABLE STPR 430
C NSTEP(2)- NUMBER OF VARIABLES FORCED INTO THE STPR 440
C REGRESSION EQUATION STPR 450
C NSTEP(3)- NUMBER OF VARIABLE DELETED FROM THE STPR 460
C EQUATION STPR 470
C NSTEP(4)- THE NUMBER OF THE LAST STEP STPR 480
C NSTEP(5)- THE NUMBER OF THE LAST VARIABLE ENTERED STPR 490
C ANS - OUTPUT VECTOR OF LENGTH 11 CONTAINING THE FOLLOWING STPR 500
C INFORMATION FOR THE LAST STEP STPR 510
C ANS(1)- SUM OF SQUARES REDUCED BY THIS STEP STPR 520
C ANS(2)- PROPORTION OF TOTAL SUM OF SQUARES REDUCEDSTPR 530
C ANS(3)- CUMULATIVE SUM OF SQUARES REDUCED UP TO STPR 540
C THIS STEP STPR 550
C ANS(4)- CUMULATIVE PROPORTION OF TOTAL SUM OF STPR 560
C SQUARES REDUCED STPR 570
C ANS(5)- SUM OF SQUARES OF THE DEPENDENT VARIABLE STPR 580
C ANS(6)- MULTIPLE CORRELATION COEFFICIENT STPR 590
C ANS(7)- F RATIO FOR SUM OF SQUARES DUE TO STPR 600
C REGRESSION STPR 610
C ANS(8)- STANDARD ERROR OF THE ESTIMATE (RESIDUAL STPR 620
C MEAN SQUARE) STPR 630
C ANS(9)- INTERCEPT CONSTANT STPR 640
C ANS(10)-MULTIPLE CORRELATION COEFFICIENT ADJUSTED STPR 650
C FOR DEGREES OF FREEDOM. STPR 660
C ANS(11)-STANDARD ERROR OF THE ESTIMATE ADJUSTED STPR 670
C FOR DEGREES OF FREEDOM. STPR 680
C L - OUTPUT VECTOR OF LENGTH K, WHERE K IS THE NUMBER OF STPR 690
C INDEPENDENT VARIABLES IN THE REGRESSION EQUATION. STPR 700
C THIS VECTOR CONTAINS THE NUMBERS OF THE INDEPENDENT STPR 710
C VARIABLES IN THE EQUATION. STPR 720
C B - OUTPUT VECTOR OF LENGTH K, CONTAINING THE PARTIAL STPR 730
C REGRESSION COEFFICIENTS CORRESPONDING TO THE STPR 740
C VARIABLES IN VECTOR L. STPR 750
C S - OUTPUT VECTOR OF LENGTH K, CONTAINING THE STANDARD STPR 760
C ERRORS OF THE PARTIAL REGRESSION COEFFICIENTS, STPR 770
C CORRESPONDING TO THE VARIABLES IN VECTOR L. STPR 780
C T - OUTPUT VECTOR OF LENGTH K, CONTAINING THE COMPUTED STPR 790
C T-VALUES CORRESPONDING TO THE VARIABLES IN VECTOR L. STPR 800
C LL - WORKING VECTOR OF LENGTH M STPR 810
C IER - 0, IF THERE IS NO ERROR. STPR 820
C 1, IF RESIDUAL SUM OF SQUARES IS NEGATIVE OR IF THE STPR 830
C PIVOTAL ELEMENT IN THE STEPWISE INVERSION PROCESS IS STPR 840
C ZERO. IN THIS CASE, THE VARIABLE WHICH CAUSES THIS STPR 850
C ERROR IS NOT ENTERED IN THE REGRESSION, THE RESULT STPR 860
C PRIOR TO THIS STEP IS RETAINED, AND THE CURRENT STPR 870
C SELECTION IS TERMINATED. STPR 880
C STPR 890
C REMARKS STPR 900
C THE NUMBER OF DATA POINTS MUST BE AT LEAST GREATER THAN THE STPR 910
C NUMBER OF INDEPENDENT VARIABLES PLUS ONE. FORCED VARIABLES STPR 920
C ARE ENTERED INTO THE REGRESSION EQUATION BEFORE ALL OTHER STPR 930
C INDEPENDENT VARIABLES. WITHIN THE SET OF FORCED VARIABLES, STPR 940
C THE ONE TO BE CHOSEN FIRST WILL BE THAT ONE WHICH EXPLAINS STPR 950
C THE GREATEST AMOUNT OF VARIANCE. STPR 960
C INSTEAD OF USING, AS A STOPPING CRITERION, A PROPORTION OF STPR 970
C THE TOTAL VARIANCE, SOME OTHER CRITERION MAY BE ADDED TO STPR 980
C SUBROUTINE STOUT. STPR 990
C STPR1000
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED STPR1010
C STOUT(NSTEP,ANS,L,B,S,T,NSTOP) STPR1020
C THIS SUBROUTINE MUST BE PROVIDED BY THE USER. IT IS AN STPR1030
C OUTPUT ROUTINE WHICH WILL PRINT THE RESULTS OF EACH STEP OF STPR1040
C THE REGRESSION ANALYSIS. NSTOP IS AN OPTION CODE WHICH IS STPR1050
C ONE IF THE STEPWISE REGRESSION IS TO BE TERMINATED, AND IS STPR1060
C ZERO IF IT IS TO CONTINUE. THE USER MUST CONSIDER THIS IF STPR1070
C SOME OTHER STOPPING CRITERION THAN VARIANCE PROPORTION IS TOSTPR1080
C BE USED. STPR1090
C STPR1100
C METHOD STPR1110
C THE ABBREVIATED DOOLITTLE METHOD IS USED TO (1) DECIDE VARI-STPR1120
C ABLES ENTERING IN THE REGRESSION AND (2) COMPUTE REGRESSION STPR1130
C COEFFICIENTS. REFER TO C. A. BENNETT AND N. L. FRANKLIN, STPR1140
C 'STATISTICAL ANALYSIS IN CHEMISTRY AND THE CHEMICAL INDUS- STPR1150
C TRY', JOHN WILEY AND SONS, 1954, APPENDIX 6A. STPR1160
C STPR1170
C ..................................................................STPR1180
C STPR1190
SUBROUTINE STPRG (M,N,D,XBAR,IDX,PCT,NSTEP,ANS,L,B,S,T,LL,IER) STPR1200
C STPR1210
DIMENSION D(1),XBAR(1),IDX(1),NSTEP(1),ANS(1),L(1),B(1),S(1),T(1),STPR1220
1LL(1) STPR1230
C STPR1240
C ..................................................................STPR1250
C STPR1260
C IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE STPR1270
C C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION STPR1280
C STATEMENT WHICH FOLLOWS. STPR1290
C STPR1300
C DOUBLE PRECISION D,XBAR,ANS,B,S,T,RD,RE STPR1310
C STPR1320
C THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS STPR1330
C APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS STPR1340
C ROUTINE. STPR1350
C STPR1360
C THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO STPR1370
C CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. SQRT IN STATEMENTSSTPR1380
C 85,90,114,132,AND 134, MUST BE CHANGED TO DSQRT. STPR1390
C STPR1400
C ..................................................................STPR1410
C STPR1420
C INITIALIZATION STPR1430
C STPR1440
IER=0 STPR1450
ONM=N-1 STPR1460
NFO=0 STPR1470
NSTEP(3)=0 STPR1480
ANS(3)=0.0 STPR1490
ANS(4)=0.0 STPR1500
NSTOP=0 STPR1510
C STPR1520
C FIND DEPENDENT VARIABLE, NUMBER OF VARIABLES TO BE FORCED TO STPR1530
C ENTER IN THE REGRESSION, AND NUMBER OF VARIABLES TO BE DELETED STPR1540
C STPR1550
DO 30 I=1,M STPR1560
LL(I)=1 STPR1570
IF(IDX(I)) 30, 30, 10 STPR1580
10 IF(IDX(I)-2) 15, 20, 25 STPR1590
15 NFO=NFO+1 STPR1600
IDX(NFO)=I STPR1610
GO TO 30 STPR1620
20 NSTEP(3)=NSTEP(3)+1 STPR1630
LL(I)=-1 STPR1640
GO TO 30 STPR1650
25 MY=I STPR1660
NSTEP(1)=MY STPR1670
LY=M*(MY-1) STPR1680
LYP=LY+MY STPR1690
ANS(5)=D(LYP) STPR1700
30 CONTINUE STPR1710
NSTEP(2)=NFO STPR1720
C STPR1730
C FIND THE MAXIMUM NUMBER OF STEPS STPR1740
C STPR1750
MX=M-NSTEP(3)-1 STPR1760
C STPR1770
C START SELECTION OF VARIABLES STPR1780
C STPR1790
DO 140 NL=1,MX STPR1800
RD=0 STPR1810
IF(NL-NFO) 35, 35, 55 STPR1820
C STPR1830
C SELECT NEXT VARIABLE TO ENTER AMONG FORCED VARIABLES STPR1840
C STPR1850
35 DO 50 I=1,NFO STPR1860
K=IDX(I) STPR1870
IF(LL(K)) 50, 50, 40 STPR1880
40 LYP=LY+K STPR1890
IP=M*(K-1)+K STPR1900
RE=D(LYP)*D(LYP)/D(IP) STPR1910
IF(RD-RE) 45, 50, 50 STPR1920
45 RD=RE STPR1930
NEW=K STPR1940
50 CONTINUE STPR1950
GO TO 75 STPR1960
C STPR1970
C SELECT NEXT VARIABLE TO ENTER AMONG NON-FORCED VARIABLES STPR1980
C STPR1990
55 DO 70 I=1,M STPR2000
IF(I-MY) 60, 70, 60 STPR2010
60 IF(LL(I)) 70, 70, 62 STPR2020
62 LYP=LY+I STPR2030
IP=M*(I-1)+I STPR2040
RE=D(LYP)*D(LYP)/D(IP) STPR2050
IF(RD-RE) 64, 70, 70 STPR2060
64 RD=RE STPR2070
NEW=I STPR2080
70 CONTINUE STPR2090
C STPR2100
C TEST WHETHER THE PROPORTION OF THE SUM OF SQUARES REDUCED BY STPR2110
C THE LAST VARIABLE ENTERED IS GREATER THAN OR EQUAL TO THE STPR2120
C SPECIFIED PROPORTION STPR2130
C STPR2140
75 IF(RD) 77,77,76 STPR2150
76 IF(ANS(5)-(ANS(3)+RD))77,77,78 STPR2160
77 IER=1 STPR2170
GO TO 150 STPR2180
78 RE=RD/ANS(5) STPR2190
IF(RE-PCT) 150, 80, 80 STPR2200
C STPR2210
C IT IS GREATER THAN OR EQUAL STPR2220
C STPR2230
80 LL(NEW)=0 STPR2240
L(NL)=NEW STPR2250
ANS(1)=RD STPR2260
ANS(2)=RE STPR2270
ANS(3)=ANS(3)+RD STPR2280
ANS(4)=ANS(4)+RE STPR2290
NSTEP(4)=NL STPR2300
NSTEP(5)=NEW STPR2310
C STPR2320
C COMPUTE MULTIPLE CORRELATION, F-VALUE FOR ANALYSIS OF STPR2330
C VARIANCE, AND STANDARD ERROR OF ESTIMATE STPR2340
C STPR2350
85 ANS(6)= SQRT(ANS(4)) STPR2360
RD=NL STPR2370
RE=ONM-RD STPR2380
RE=(ANS(5)-ANS(3))/RE STPR2390
ANS(7)=(ANS(3)/RD)/RE STPR2400
90 ANS(8)= SQRT(RE) STPR2410
C STPR2420
C DIVIDE BY THE PIVOTAL ELEMENT STPR2430
C STPR2440
IP=M*(NEW-1)+NEW STPR2450
RD=D(IP) STPR2460
LYP=NEW-M STPR2470
DO 100 J=1,M STPR2480
LYP=LYP+M STPR2490
IF(LL(J)) 100, 94, 97 STPR2500
94 IF(J-NEW) 96, 98, 96 STPR2510
96 IJ=M*(J-1)+J STPR2520
D(IJ)=D(IJ)+D(LYP)*D(LYP)/RD STPR2530
97 D(LYP)=D(LYP)/RD STPR2540
GO TO 100 STPR2550
98 D(IP)=1.0/RD STPR2560
100 CONTINUE STPR2570
C STPR2580
C COMPUTE REGRESSION COEFFICIENTS STPR2590
C STPR2600
LYP=LY+NEW STPR2610
B(NL)=D(LYP) STPR2620
IF(NL-1) 112, 112, 105 STPR2630
105 ID=NL-1 STPR2640
DO 110 J=1,ID STPR2650
IJ=NL-J STPR2660
KK=L(IJ) STPR2670
LYP=LY+KK STPR2680
B(IJ)=D(LYP) STPR2690
DO 110 K=1,J STPR2700
IK=NL-K+1 STPR2710
MK=L(IK) STPR2720
LYP=M*(MK-1)+KK STPR2730
110 B(IJ)=B(IJ)-D(LYP)*B(IK) STPR2740
C STPR2750
C COMPUTE INTERCEPT STPR2760
C STPR2770
112 ANS(9)=XBAR(MY) STPR2780
DO 115 I=1,NL STPR2790
KK=L(I) STPR2800
ANS(9)=ANS(9)-B(I)*XBAR(KK) STPR2810
IJ=M*(KK-1)+KK STPR2820
114 S(I)=ANS(8)* SQRT(D(IJ)) STPR2830
115 T(I)=B(I)/S(I) STPR2840
C STPR2850
C PERFORM A REDUCTION TO ELIMINATE THE LAST VARIABLE ENTERED STPR2860
C STPR2870
IP=M*(NEW-1) STPR2880
DO 130 I=1,M STPR2890
IJ=I-M STPR2900
IK=NEW-M STPR2910
IP=IP+1 STPR2920
IF(LL(I)) 130, 130, 120 STPR2930
120 DO 126 J=1,M STPR2940
IJ=IJ+M STPR2950
IK=IK+M STPR2960
IF(LL(J)) 126, 122, 122 STPR2970
122 IF(J-NEW) 124, 126, 124 STPR2980
124 D(IJ)=D(IJ)-D(IP)*D(IK) STPR2990
126 CONTINUE STPR3000
D(IP)=D(IP)/(-RD) STPR3010
130 CONTINUE STPR3020
C STPR3030
C ADJUST STANDARD ERROR OF THE ESTIMATE AND MULTIPLE CORRELATION STPR3040
C COEFFICIENT STPR3050
C STPR3060
RD=N-NSTEP(4) STPR3070
RD=ONM/RD STPR3080
132 ANS(10)=SQRT(1.0-(1.0-ANS(6)*ANS(6))*RD) STPR3090
134 ANS(11)=ANS(8)*SQRT(RD) STPR3100
C STPR3110
C CALL THE OUTPUT SUBROUTINE STPR3120
CALL STOUT (NSTEP,ANS,L,B,S,T,NSTOP) STPR3130
C STPR3140
C TEST WHETHER THE STEP-WISE REGRESSION WAS TERMINATED IN STPR3150
C SUBROUTINE STOUT STPR3160
C STPR3170
IF(NSTOP) 140, 140, 150 STPR3180
C STPR3190
140 CONTINUE STPR3200
C STPR3210
150 RETURN STPR3220
END STPR3230