Trailing-Edge
-
PDP-10 Archives
-
decus_20tap2_198111
-
decus/20-0026/tcnp.ssp
There are 2 other files named tcnp.ssp in the archive. Click here to see a list.
C TCNP 10
C ..................................................................TCNP 20
C TCNP 30
C SUBROUTINE TCNP TCNP 40
C TCNP 50
C PURPOSE TCNP 60
C A SERIES EXPANSION IN CHEBYSHEV POLYNOMIALS WITH INDEPENDENTTCNP 70
C VARIABLE X IS TRANSFORMED TO A POLYNOMIAL WITH INDEPENDENT TCNP 80
C VARIABLE Z, WHERE X=A*Z+B. TCNP 90
C TCNP 100
C USAGE TCNP 110
C CALL TCNP(A,B,POL,N,C,WORK) TCNP 120
C TCNP 130
C DESCRIPTION OF PARAMETERS TCNP 140
C A - FACTOR OF LINEAR TERM IN GIVEN LINEAR TRANSFORMATIONTCNP 150
C B - CONSTANT TERM IN GIVEN LINEAR TRANSFORMATION TCNP 160
C POL - COEFFICIENT VECTOR OF POLYNOMIAL (RESULTANT VALUE) TCNP 170
C COEFFICIENTS ARE ORDERED FROM LOW TO HIGH TCNP 180
C N - DIMENSION OF COEFFICIENT VECTORS POL AND C TCNP 190
C C - GIVEN COEFFICIENT VECTOR OF EXPANSION TCNP 200
C COEFFICIENTS ARE ORDERED FROM LOW TO HIGH TCNP 210
C POL AND C MAY BE IDENTICALLY LOCATED TCNP 220
C WORK - WORKING STORAGE OF DIMENSION 2*N TCNP 230
C TCNP 240
C REMARKS TCNP 250
C COEFFICIENT VECTOR C REMAINS UNCHANGED IF NOT COINCIDING TCNP 260
C WITH COEFFICIENT VECTOR POL. TCNP 270
C OPERATION IS BYPASSED IN CASE N LESS THAN 1. TCNP 280
C THE LINEAR TRANSFORMATION X=A*Z+B OR Z=(1/A)(X-B) TRANSFORMSTCNP 290
C THE RANGE (-1,+1) IN X TO THE RANGE (ZL,ZR) IN Z, WHERE TCNP 300
C ZL=-(1+B)/A AND ZR=(1-B)/A. TCNP 310
C FOR GIVEN ZL, ZR WE HAVE A=2/(ZR-ZL) AND B=-(ZR+ZL)/(ZR-ZL) TCNP 320
C TCNP 330
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED TCNP 340
C NONE TCNP 350
C TCNP 360
C METHOD TCNP 370
C THE TRANSFORMATION IS BASED ON THE RECURRENCE EQUATION TCNP 380
C FOR CHEBYSHEV POLYNOMIALS T(N,X) TCNP 390
C T(N+1,X)=2*X*T(N,X)-T(N-1,X), TCNP 400
C WHERE THE FIRST TERM IN BRACKETS IS THE INDEX, TCNP 410
C THE SECOND IS THE ARGUMENT. TCNP 420
C STARTING VALUES ARE T(0,X)=1, T(1,X)=X. TCNP 430
C THE TRANSFORMATION IS IMPLICITLY DEFINED BY MEANS OF TCNP 440
C X = A*Z+B TOGETHER WITH TCNP 450
C SUM(POL(I)*Z**(I-1), SUMMED OVER I FROM 1 TO N) TCNP 460
C =SUM(C(I)*T(I-1,X), SUMMED OVER I FROM 1 TO N). TCNP 470
C TCNP 480
C ..................................................................TCNP 490
C TCNP 500
SUBROUTINE TCNP(A,B,POL,N,C,WORK) TCNP 510
C TCNP 520
DIMENSION POL(1),C(1),WORK(1) TCNP 530
C TCNP 540
C TEST OF DIMENSION TCNP 550
IF(N-1)2,1,3 TCNP 560
C TCNP 570
C DIMENSION LESS THAN 2 TCNP 580
1 POL(1)=C(1) TCNP 590
2 RETURN TCNP 600
C TCNP 610
3 POL(1)=C(1)+C(2)*B TCNP 620
POL(2)=C(2)*A TCNP 630
IF(N-2)2,2,4 TCNP 640
C TCNP 650
C INITIALIZATION TCNP 660
4 WORK(1)=1. TCNP 670
WORK(2)=B TCNP 680
WORK(3)=0. TCNP 690
WORK(4)=A TCNP 700
XD=A+A TCNP 710
X0=B+B TCNP 720
C TCNP 730
C CALCULATE COEFFICIENT VECTOR OF NEXT CHEBYSHEV POLYNOMIAL TCNP 740
C AND ADD MULTIPLE OF THIS VECTOR TO POLYNOMIAL POL TCNP 750
DO 6 J=3,N TCNP 760
P=0. TCNP 770
C TCNP 780
DO 5 K=2,J TCNP 790
H=P-WORK(2*K-3)+X0*WORK(2*K-2) TCNP 800
P=WORK(2*K-2) TCNP 810
WORK(2*K-2)=H TCNP 820
WORK(2*K-3)=P TCNP 830
POL(K-1)=POL(K-1)+H*C(J) TCNP 840
5 P=XD*P TCNP 850
WORK(2*J-1)=0. TCNP 860
WORK(2*J)=P TCNP 870
6 POL(J)=C(J)*P TCNP 880
RETURN TCNP 890
END TCNP 900