Google
 

Trailing-Edge - PDP-10 Archives - decus_20tap5_198111 - decus/20-0137/roots/roots.for
There is 1 other file named roots.for in the archive. Click here to see a list.
C	WESTERN MICHIGAN UNIVERSITY
C	ROOTS.F4 (FILENAME ON LIBRARY DECTAPE)
C	ROOTS, 2.1.1 (CALLING NAME, SUBLST NO.)
C	ROOTS OF POLYNOMIALS
C	THIS PROGRAM CAME FROM DECUS(NO. 10-101, IBM SSP), AND
C	 WAS IMPLEMENTED BY N. GRANT AND B. GRANET.
C	LIBRARY DECTAPE PROGS. USED:  USAGE. MAC
C	INTERNAL SUBR. USED:  POLRT
C	ABOVE COMMENTS AND RIGHT ADJUSTED COMMENTS PUT IN BY WG
C
      DIMENSION XCOEF(31),COEF(31),ROOTR(30),ROOTI(30)
C	CALL USAGE('ROOTS')
30    WRITE(5,2)
2     FORMAT('1ENTER DEGREE OF POLYNOMIAL.  MAXIMUM OF 30'/)
20    READ(5,1) N
1     FORMAT(I)
      IF(N .GT. 0 .AND. N .LE. 30) GO TO 10
      WRITE(5,11)
11    FORMAT(' INVALID DEGREE.  TRY AGAIN.'/)
      GO TO 20
10    WRITE(5,3)
3     FORMAT(' ENTER COEFS. OF POLY. BEGINNING WITH CONSTANT.'/
     1' MAXIMUM OF 10 PER LINE.'/)
      NC=N+1
      READ(5,4)(XCOEF(I),I=1,NC)
4     FORMAT(10G)
      CALL POLRT(XCOEF,COEF,N,ROOTR,ROOTI,IER)
      WRITE(5,7)
7     FORMAT('0INPUT COEFFICIENTS IN ASCENDING POWERS OF X'/)
      WRITE(5,5)(XCOEF(I),I=1,NC)
5     FORMAT(' ',G)
      IF(IER .EQ. 3) GO TO 13
      IF(IER .EQ. 4) GO TO 12
      WRITE(5,8)
8     FORMAT('0',10X,'REAL',13X,'IMAGINARY'/)
      WRITE(5,6)(ROOTR(K),ROOTI(K),K=1,N)
6     FORMAT(1X/2(5X,G15.5))
      GO TO 30
12    WRITE(5,14)
14    FORMAT(' HIGH ORDER COEFFICIENT IS ZERO')
      GO TO 30
13    WRITE(5,15)
15    FORMAT(' ITERATIVE PROCEDURE FAILS.')
      GO TO 30
      END
C
C     ..................................................................
C
C        SUBROUTINE POLRT
C
C        PURPOSE
C           COMPUTES THE REAL AND COMPLEX ROOTS OF A REAL POLYNOMIAL
C
C        USAGE
C           CALL POLRT(XCOF,COF,M,ROOTR,ROOTI,IER)
C
C        DESCRIPTION OF PARAMETERS
C           XCOF -VECTOR OF M+1 COEFFICIENTS OF THE POLYNOMIAL
C                 ORDERED FROM SMALLEST TO LARGEST POWER
C           COF  -WORKING VECTOR OF LENGTH M+1
C           M    -ORDER OF POLYNOMIAL
C           ROOTR-RESULTANT VECTOR OF LENGTH M CONTAINING REAL ROOTS
C                 OF THE POLYNOMIAL
C           ROOTI-RESULTANT VECTOR OF LENGTH M CONTAINING THE
C                 CORRESPONDING IMAGINARY ROOTS OF THE POLYNOMIAL
C           IER  -ERROR CODE WHERE
C                 IER=0  NO ERROR
C                 IER=1  M LESS THAN ONE
C                 IER=2  M GREATER THAN 36
C                 IER=3  UNABLE TO DETERMINE ROOT WITH 500 INTERATIONS
C                        ON 5 STARTING VALUES
C                 IER=4  HIGH ORDER COEFFICIENT IS ZERO
C
C        REMARKS
C           LIMITED TO 36TH ORDER POLYNOMIAL OR LESS.
C           FLOATING POINT OVERFLOW MAY OCCUR FOR HIGH ORDER
C           POLYNOMIALS BUT WILL NOT AFFECT THE ACCURACY OF THE RESULTS.
C
C        SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C           NONE
C
C        METHOD
C           NEWTON-RAPHSON ITERATIVE TECHNIQUE.  THE FINAL ITERATIONS
C           ON EACH ROOT ARE PERFORMED USING THE ORIGINAL POLYNOMIAL
C           RATHER THAN THE REDUCED POLYNOMIAL TO AVOID ACCUMULATED
C           ERRORS IN THE REDUCED POLYNOMIAL.
C
C     ..................................................................
C
C---------------XCOF, M ARE INPUT.  OTHER ARGS. ARE RETURNED.
      SUBROUTINE POLRT(XCOF,COF,M,ROOTR,ROOTI,IER)
      DIMENSION XCOF(1),COF(1),ROOTR(1),ROOTI(1)
      DOUBLE PRECISION XO,YO,X,Y,XPR,YPR,UX,UY,V,YT,XT,U,XT2,YT2,SUMSQ,
     1 DX,DY,TEMP,ALPHA
C
C        ...............................................................
C
C        IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE
C        C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION
C        STATEMENT WHICH FOLLOWS.
C
C     DOUBLE PRECISION XCOF,COF,ROOTR,ROOTI
C
C        THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS
C        APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS
C        ROUTINE.
C        THE DOUBLE PRECISION VERSION MAY BE MODIFIED BY CHANGING THE
C        CONSTANT IN STATEMENT 78 TO 1.0D-12 AND IN STATEMENT 122 TO
C        1.0D-10.  THIS WILL PROVIDE HIGHER PRECISION RESULTS AT THE
C        COST OF EXECUTION TIME
C
C        ...............................................................
C
      IFIT=0
      N=M
      IER=0
      IF(XCOF(N+1))10,25,10
   10 IF(N) 15,15,32
C
C        SET ERROR CODE TO 1
C
   15 IER=1
   20 RETURN
C
C        SET ERROR CODE TO 4
C
   25 IER=4
      GO TO 20
C
C        SET ERROR CODE TO 2
C
   30 IER=2
      GO TO 20
   32 IF(N-36) 35,35,30
   35 NX=N
      NXX=N+1
      N2=1
      KJ1 = N+1
      DO 40 L=1,KJ1
      MT=KJ1-L+1
   40 COF(MT)=XCOF(L)
C
C        SET INITIAL VALUES
C
   45 XO=.00500101
      YO=0.01000101
C
C        ZERO INITIAL VALUE COUNTER
C
      IN=0
   50 X=XO
C
C        INCREMENT INITIAL VALUES AND COUNTER
C
      XO=-10.0*YO
      YO=-10.0*X
C
C        SET X AND Y TO CURRENT VALUE
C
      X=XO
      Y=YO
      IN=IN+1
      GO TO 59
   55 IFIT=1
      XPR=X
      YPR=Y
C
C        EVALUATE POLYNOMIAL AND DERIVATIVES
C
   59 ICT=0
   60 UX=0.0
      UY=0.0
      V =0.0
      YT=0.0
      XT=1.0
      U=COF(N+1)
      IF(U) 65,130,65
   65 DO 70 I=1,N
      L =N-I+1
      TEMP=COF(L)
      XT2=X*XT-Y*YT
      YT2=X*YT+Y*XT
      U=U+TEMP*XT2
      V=V+TEMP*YT2
      FI=I
      UX=UX+FI*XT*TEMP
      UY=UY-FI*YT*TEMP
      XT=XT2
   70 YT=YT2
      SUMSQ=UX*UX+UY*UY
      IF(SUMSQ) 75,110,75
   75 DX=(V*UY-U*UX)/SUMSQ
      X=X+DX
      DY=-(U*UY+V*UX)/SUMSQ
      Y=Y+DY
   78 IF(DABS(DY)+DABS(DX)-1.0D-05) 100,80,80
C
C        STEP ITERATION COUNTER
C
   80 ICT=ICT+1
      IF(ICT-500) 60,85,85
   85 IF(IFIT)100,90,100
   90 IF(IN-5) 50,95,95
C
C        SET ERROR CODE TO 3
C
   95 IER=3
      GO TO 20
  100 DO 105 L=1,NXX
      MT=KJ1-L+1
      TEMP=XCOF(MT)
      XCOF(MT)=COF(L)
  105 COF(L)=TEMP
      ITEMP=N
      N=NX
      NX=ITEMP
      IF(IFIT) 120,55,120
  110 IF(IFIT) 115,50,115
  115 X=XPR
      Y=YPR
  120 IFIT=0
  122 IF(DABS(Y)-1.0D-4*DABS(X)) 135,125,125
  125 ALPHA=X+X
      SUMSQ=X*X+Y*Y
      N=N-2
      GO TO 140
  130 X=0.0
      NX=NX-1
      NXX=NXX-1
  135 Y=0.0
      SUMSQ=0.0
      ALPHA=X
      N=N-1
  140 COF(2)=COF(2)+ALPHA*COF(1)
  145 DO 150 L=2,N
  150 COF(L+1)=COF(L+1)+ALPHA*COF(L)-SUMSQ*COF(L-1)
  155 ROOTI(N2)=Y
      ROOTR(N2)=X
      N2=N2+1
      IF(SUMSQ) 160,165,160
  160 Y=-Y
      SUMSQ=0.0
      GO TO 155
  165 IF(N) 20,20,45
      END