Trailing-Edge
-
PDP-10 Archives
-
decuslib10-02
-
43,50145/wtest.ssp
There are 2 other files named wtest.ssp in the archive. Click here to see a list.
C WTES 10
C ..................................................................WTES 20
C WTES 30
C SUBROUTINE WTEST WTES 40
C WTES 50
C PURPOSE WTES 60
C TEST DEGREE OF ASSOCIATION AMONG A NUMBER OF VARIABLES BY WTES 70
C THE KENDALL COEFFICIENT OF CONCORDANCE WTES 80
C WTES 90
C USAGE WTES 100
C CALL WTEST(A,R,N,M,WA,W,CS,NDF,NR) WTES 110
C WTES 120
C DESCRIPTION OF PARAMETERS WTES 130
C A - INPUT MATRIX, N BY M, OF ORIGINAL DATA WTES 140
C R - OUTPUT MATRIX, N BY M, OF RANKED DATA.SMALLEST VALUE WTES 150
C IS RANKED 1, LARGEST IS RANKED N. TIES ARE ASSIGNED WTES 160
C AVERAGE OF TIED RANKS WTES 170
C N - NUMBER OF VARIABLES WTES 180
C M - NUMBER OF CASES WTES 190
C WA - WORK AREA VECTOR OF LENGTH 2*M WTES 200
C W - KENDALL COEFFICIENT OF CONCORDANCE(OUTPUT) WTES 210
C CS - CHI-SQUARE (OUTPUT) WTES 220
C NDF - NUMBER OF DEGREES OF FREEDOM (OUTPUT) WTES 230
C NR - CODE, 0 FOR UNRANKED DATA IN A, 1 FOR RANKED DATA WTES 240
C IN A (INPUT) WTES 250
C WTES 260
C REMARKS WTES 270
C CHI-SQUARE IS SET TO ZERO IF M IS 7 OR SMALLER WTES 280
C WTES 290
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED WTES 300
C RANK WTES 310
C TIE WTES 320
C WTES 330
C METHOD WTES 340
C DESCRIBED IN S. SIEGEL, 'NONPARAMETRIC STATISTICS FOR THE WTES 350
C BEHAVIORAL SCIENCES', MCGRAW-HILL, NEW YORK, 1956, WTES 360
C CHAPTER 9 WTES 370
C ..................................................................WTES 380
C WTES 390
C WTES 400
SUBROUTINE WTEST (A,R,N,M,WA,W,CS,NDF,NR) WTES 410
DIMENSION A(1),R(1),WA(1) WTES 420
C WTES 430
FM=M WTES 440
FN=N WTES 450
C WTES 460
C DETERMINE WHETHER DATA IS RANKED WTES 470
C RANK DATA FOR ALL VARIABLES ASSIGNING TIED OBSERVATIONS AVERAGEWTES 480
C OF TIED RANKS AND COMPUTE CORRECTION FOR TIED SCORES WTES 490
C WTES 500
T=0.0 WTES 510
KT=1 WTES 520
DO 20 I=1,N WTES 530
IJ=I-N WTES 540
IK=IJ WTES 550
IF(NR-1) 5,2,5 WTES 560
2 DO 3 J=1,M WTES 570
IJ=IJ+N WTES 580
K=M+J WTES 590
3 WA(K)=A(IJ) WTES 600
GO TO 15 WTES 610
5 DO 10 J=1,M WTES 620
IJ=IJ+N WTES 630
10 WA(J)=A(IJ) WTES 640
CALL RANK(WA,WA(M+1),M) WTES 650
15 CALL TIE(WA(M+1),M,KT,TI) WTES 660
T=T+TI WTES 670
DO 20 J=1,M WTES 680
IK=IK+N WTES 690
IW=M+J WTES 700
20 R(IK)=WA(IW) WTES 710
C WTES 720
C CALCULATE VECTOR OF SUMS OF RANKS WTES 730
C WTES 740
IR=0 WTES 750
DO 40 J=1,M WTES 760
WA(J)=0.0 WTES 770
DO 40 I=1,N WTES 780
IR=IR+1 WTES 790
40 WA(J)=WA(J)+R(IR) WTES 800
C WTES 810
C COMPUTE MEAN OF SUMS OF RANKS WTES 820
C WTES 830
SM=0.0 WTES 840
DO 50 J=1,M WTES 850
50 SM=SM+WA(J) WTES 860
SM=SM/FM WTES 870
C WTES 880
C COMPUTE SUM OF SQUARES OF DEVIATIONS WTES 890
C WTES 900
S=0.0 WTES 910
DO 60 J=1,M WTES 920
60 S=S+(WA(J)-SM)*(WA(J)-SM) WTES 930
C WTES 940
C COMPUTE W WTES 950
C WTES 960
W=S/(((FN*FN)*(FM*FM*FM-FM)/12.0)-FN*T) WTES 970
C WTES 980
C COMPUTE DEGREES OF FREEDOM AND CHI-SQUARE IF M IS OVER 7 WTES 990
C WTES1000
CS=0.0 WTES1010
NDF=0 WTES1020
IF(M-7) 70,70,65 WTES1030
65 CS=FN*(FM-1.0)*W WTES1040
NDF=M-1 WTES1050
70 RETURN WTES1060
END WTES1070