Trailing-Edge
-
PDP-10 Archives
-
decuslib20-02
-
decus/20-0026/discr.ssp
There are 2 other files named discr.ssp in the archive. Click here to see a list.
C DISC 10
C ..................................................................DISC 20
C DISC 30
C SUBROUTINE DISCR DISC 40
C DISC 50
C PURPOSE DISC 60
C COMPUTE A SET OF LINEAR FUNCTIONS WHICH SERVE AS INDICES DISC 70
C FOR CLASSIFYING AN INDIVIDUAL INTO ONE OF SEVERAL GROUPS. DISC 80
C NORMALLY THIS SUBROUTINE IS USED IN THE PERFORMANCE OF DISC 90
C DISCRIMINANT ANALYSIS. DISC 100
C DISC 110
C USAGE DISC 120
C CALL DISCR (K,M,N,X,XBAR,D,CMEAN,V,C,P,LG) DISC 130
C DISC 140
C DESCRIPTION OF PARAMETERS DISC 150
C K - NUMBER OF GROUPS. K MUST BE GREATER THAN ONE. DISC 160
C M - NUMBER OF VARIABLES DISC 170
C N - INPUT VECTOR OF LENGTH K CONTAINING SAMPLE SIZES OF DISC 180
C GROUPS. DISC 190
C X - INPUT VECTOR CONTAINING DATA IN THE MANNER EQUIVA- DISC 200
C LENT TO A 3-DIMENSIONAL FORTRAN ARRAY, X(1,1,1), DISC 210
C X(2,1,1), X(3,1,1), ETC. THE FIRST SUBSCRIPT IS DISC 220
C CASE NUMBER, THE SECOND SUBSCRIPT IS VARIABLE NUMBERDISC 230
C AND THE THIRD SUBSCRIPT IS GROUP NUMBER. THE DISC 240
C LENGTH OF VECTOR X IS EQUAL TO THE TOTAL NUMBER OF DISC 250
C DATA POINTS, T*M, WHERE T = N(1)+N(2)+...+N(K). DISC 260
C XBAR - INPUT MATRIX (M X K) CONTAINING MEANS OF M VARIABLESDISC 270
C IN K GROUPS DISC 280
C D - INPUT MATRIX (M X M) CONTAINING THE INVERSE OF DISC 290
C POOLED DISPERSION MATRIX. DISC 300
C CMEAN - OUTPUT VECTOR OF LENGTH M CONTAINING COMMON MEANS. DISC 310
C V - OUTPUT VARIABLE CONTAINING GENERALIZED MAHALANOBIS DISC 320
C D-SQUARE. DISC 330
C C - OUTPUT MATRIX (M+1 X K) CONTAINING THE COEFFICIENTS DISC 340
C OF DISCRIMINANT FUNCTIONS. THE FIRST POSITION OF DISC 350
C EACH COLUMN (FUNCTION) CONTAINS THE VALUE OF THE DISC 360
C CONSTANT FOR THAT FUNCTION. DISC 370
C P - OUTPUT VECTOR CONTAINING THE PROBABILITY ASSOCIATED DISC 380
C WITH THE LARGEST DISCRIMINANT FUNCTIONS OF ALL CASESDISC 390
C IN ALL GROUPS. CALCULATED RESULTS ARE STORED IN THEDISC 400
C MANNER EQUIVALENT TO A 2-DIMENSIONAL AREA (THE DISC 410
C FIRST SUBSCRIPT IS CASE NUMBER, AND THE SECOND DISC 420
C SUBSCRIPT IS GROUP NUMBER). VECTOR P HAS LENGTH DISC 430
C EQUAL TO THE TOTAL NUMBER OF CASES, T (T = N(1)+N(2)DISC 440
C +...+N(K)). DISC 450
C LG - OUTPUT VECTOR CONTAINING THE SUBSCRIPTS OF THE DISC 460
C LARGEST DISCRIMINANT FUNCTIONS STORED IN VECTOR P. DISC 470
C THE LENGTH OF VECTOR LG IS THE SAME AS THE LENGTH DISC 480
C OF VECTOR P. DISC 490
C DISC 500
C REMARKS DISC 510
C THE NUMBER OF VARIABLES MUST BE GREATER THAN OR EQUAL TO DISC 520
C THE NUMBER OF GROUPS. DISC 530
C DISC 540
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED DISC 550
C NONE DISC 560
C DISC 570
C METHOD DISC 580
C REFER TO 'BMD COMPUTER PROGRAMS MANUAL', EDITED BY W. J. DISC 590
C DIXON, UCLA, 1964, AND T. W. ANDERSON, 'INTRODUCTION TO DISC 600
C MULTIVARIATE STATISTICAL ANALYSIS', JOHN WILEY AND SONS, DISC 610
C 1958, SECTION 6.6-6.8. DISC 620
C DISC 630
C ..................................................................DISC 640
C DISC 650
SUBROUTINE DISCR (K,M,N,X,XBAR,D,CMEAN,V,C,P,LG) DISC 660
DIMENSION N(1),X(1),XBAR(1),D(1),CMEAN(1),C(1),P(1),LG(1) DISC 670
C DISC 680
C ...............................................................DISC 690
C DISC 700
C IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE DISC 710
C C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION DISC 720
C STATEMENT WHICH FOLLOWS. DISC 730
C DISC 740
C DOUBLE PRECISION XBAR,D,CMEAN,V,C,SUM,P,PL DISC 750
C DISC 760
C THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS DISC 770
C APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS DISC 780
C ROUTINE. DISC 790
C DISC 800
C THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO DISC 810
C CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. EXP IN STATEMENT DISC 820
C 250 MUST BE CHANGED TO DEXP. DISC 830
C DISC 840
C ...............................................................DISC 850
C DISC 860
C CALCULATE COMMON MEANS DISC 870
C DISC 880
N1=N(1) DISC 890
DO 100 I=2,K DISC 900
100 N1=N1+N(I) DISC 910
FNT=N1 DISC 920
DO 110 I=1,K DISC 930
110 P(I)=N(I) DISC 940
DO 130 I=1,M DISC 950
CMEAN(I)=0 DISC 960
N1=I-M DISC 970
DO 120 J=1,K DISC 980
N1=N1+M DISC 990
120 CMEAN(I)=CMEAN(I)+P(J)*XBAR(N1) DISC1000
130 CMEAN(I)=CMEAN(I)/FNT DISC1010
C DISC1020
C CALCULATE GENERALIZED MAHALANOBIS D SQUARE DISC1030
C DISC1040
L=0 DISC1050
DO 140 I=1,K DISC1060
DO 140 J=1,M DISC1070
L=L+1 DISC1080
140 C(L)=XBAR(L)-CMEAN(J) DISC1090
V=0.0 DISC1100
L=0 DISC1110
DO 160 J=1,M DISC1120
DO 160 I=1,M DISC1130
N1=I-M DISC1140
N2=J-M DISC1150
SUM=0.0 DISC1160
DO 150 IJ=1,K DISC1170
N1=N1+M DISC1180
N2=N2+M DISC1190
150 SUM=SUM+P(IJ)*C(N1)*C(N2) DISC1200
L=L+1 DISC1210
160 V=V+D(L)*SUM DISC1220
C DISC1230
C CALCULATE THE COEFFICIENTS OF DISCRIMINANT FUNCTIONS DISC1240
C DISC1250
N2=0 DISC1260
DO 190 KA=1,K DISC1270
DO 170 I=1,M DISC1280
N2=N2+1 DISC1290
170 P(I)=XBAR(N2) DISC1300
IQ=(M+1)*(KA-1)+1 DISC1310
SUM=0.0 DISC1320
DO 180 J=1,M DISC1330
N1=J-M DISC1340
DO 180 L=1,M DISC1350
N1=N1+M DISC1360
180 SUM=SUM+D(N1)*P(J)*P(L) DISC1370
C(IQ)=-(SUM/2.0) DISC1380
DO 190 I=1,M DISC1390
N1=I-M DISC1400
IQ=IQ+1 DISC1410
C(IQ)=0.0 DISC1420
DO 190 J=1,M DISC1430
N1=N1+M DISC1440
190 C(IQ)=C(IQ)+D(N1)*P(J) DISC1450
C DISC1460
C FOR EACH CASE IN EACH GROUP, CALCULATE.. DISC1470
C DISC1480
C DISCRIMINANT FUNCTIONS DISC1490
C DISC1500
LBASE=0 DISC1510
N1=0 DISC1520
DO 270 KG=1,K DISC1530
NN=N(KG) DISC1540
DO 260 I=1,NN DISC1550
L=I-NN+LBASE DISC1560
DO 200 J=1,M DISC1570
L=L+NN DISC1580
200 D(J)=X(L) DISC1590
N2=0 DISC1600
DO 220 KA=1,K DISC1610
N2=N2+1 DISC1620
SUM=C(N2) DISC1630
DO 210 J=1,M DISC1640
N2=N2+1 DISC1650
210 SUM=SUM+C(N2)*D(J) DISC1660
220 XBAR(KA)=SUM DISC1670
C DISC1680
C THE LARGEST DISCRIMINANT FUNCTION DISC1690
C DISC1700
L=1 DISC1710
SUM=XBAR(1) DISC1720
DO 240 J=2,K DISC1730
IF(SUM-XBAR(J)) 230, 240, 240 DISC1740
230 L=J DISC1750
SUM=XBAR(J) DISC1760
240 CONTINUE DISC1770
C DISC1780
C PROBABILITY ASSOCIATED WITH THE LARGEST DISCRIMINANT FUNCTION DISC1790
C DISC1800
PL=0.0 DISC1810
DO 250 J=1,K DISC1820
250 PL=PL+ EXP(XBAR(J)-SUM) DISC1830
N1=N1+1 DISC1840
LG(N1)=L DISC1850
260 P(N1)=1.0/PL DISC1860
270 LBASE=LBASE+NN*M DISC1870
C DISC1880
RETURN DISC1890
END DISC1900