Trailing-Edge
-
PDP-10 Archives
-
decuslib20-02
-
decus/20-0026/stepr.cdk
There are 2 other files named stepr.cdk in the archive. Click here to see a list.
$JOB STEPR[30,30]
$FORTRAN STEPR
C STEP 10
C ..................................................................STEP 20
C STEP 30
C SAMPLE MAIN PROGRAM FOR STEP-WISE MULTIPLE REGRESSION - STEPR STEP 40
C STEP 50
C PURPOSE STEP 60
C (1) READ THE PROBLEM PARAMETER CARD FOR A STEP-WISE MULTIPLESTEP 70
C REGRESSION, (2) READ SUBSET SELECTION CARDS, (3) CALL THE STEP 80
C SUBROUTINE TO CALCULATE MEANS, STANDARD DEVIATIONS, SIMPLE STEP 90
C CORRELATION COEFFICIENTS, AND (4) CALL THE SUBROUTINE TO STEP 100
C PERFORM EACH STEP OF REGRESSION ANALYSIS. STEP 110
C STEP 120
C REMARKS STEP 130
C THE NUMBER OF OBSERVATIONS, N, MUST BE GREATER THAN M+2, STEP 140
C WHERE M IS THE NUMBER OF VARIABLES. IF SELECTION CARDS ARE STEP 150
C NOT PRESENT, THIS PROGRAM CAN NOT PERFORM STEP-WISE MULTIPLESTEP 160
C REGRESSION. STEP 170
C STEP 180
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED STEP 190
C CORRE (WHICH, IN TURN, CALLS THE SUBROUTINE DATA) STEP 200
C MSTR (WHICH, IN TURN, CALLS THE SUBROUTINE LOC) STEP 210
C STPRG (WHICH, IN TURN, CALLS THE SUBROUTINE STOUT) STEP 220
C STEP 230
C METHOD STEP 240
C REFER TO C. A. BENNETT AND N. L. FRANKLIN, 'STATISTICAL STEP 250
C ANALYSIS IN CHEMISTRY AND THE CHEMICAL INDUSTRY', JOHN WILEYSTEP 260
C AND SONS, 1954, APPENDIX 6A. STEP 270
C STEP 280
C ..................................................................STEP 290
C STEP 300
C THE FOLLOWING DIMENSIONS MUST BE GREATER THAN OR EQUAL TO THE STEP 310
C NUMBER OF VARIABLES, M.. STEP 320
C STEP 330
DIMENSION XBAR(35),STD(35),D(35),B(35),T(35),IDX(35),L(35) STEP 340
C STEP 350
C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE STEP 360
C PRODUCT OF M*M.. STEP 370
C STEP 380
DIMENSION RX(1225) STEP 390
C STEP 400
C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE STEP 410
C (M+1)*M/2.. STEP 420
C STEP 430
DIMENSION R(630) STEP 440
C STEP 450
C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO 5.. STEP 460
C STEP 470
DIMENSION NSTEP(5) STEP 480
C STEP 490
C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO 11.. STEP 500
C STEP 510
DIMENSION ANS(11) STEP 520
C STEP 530
C ..................................................................STEP 540
C STEP 550
C IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE STEP 560
C C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION STEP 570
C STATEMENT WHICH FOLLOWS. STEP 580
C STEP 590
C DOUBLE PRECISION XBAR,STD,RX,R,B,T,ANS,YEST STEP 600
C STEP 610
C THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS STEP 620
C APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS STEP 630
C ROUTINE. STEP 640
C STEP 650
C ..................................................................STEP 660
C STEP 670
1 FORMAT(A4,A2,I5,2I2,F6.0,I1) STEP 680
2 FORMAT(53H0NUMBER OF SELECTIONS NOT SPECIFIED. JOB TERMINATED.) STEP 690
3 FORMAT(35H1STEP-WISE MULTIPLE REGRESSION.....A4,A2) STEP 700
4 FORMAT(31H0VARIABLE MEAN STANDARD/4X,3HN0.16X,9HDEVIATION)STEP 710
5 FORMAT(4X,I2,F14.5,F12.5) STEP 720
6 FORMAT(19H1CORRELATION MATRIX) STEP 730
7 FORMAT(4H0ROWI3/(10F12.5)) STEP 740
8 FORMAT(72I1) STEP 750
9 FORMAT(23H0NUMBER OF OBSERVATIONSI5) STEP 760
10 FORMAT(20H NUMBER OF VARIABLES3X,I5) STEP 770
11 FORMAT(21H NUMBER OF SELECTIONS2X,I5) STEP 780
12 FORMAT(28H0CONSTANT TO LIMIT VARIABLESF9.5) STEP 790
13 FORMAT(/15H1SELECTION.....I2) STEP 800
14 FORMAT(16X,18HTABLE OF RESIDUALS//9H CASE NO.5X,7HY VALUE5X,10HY ESTEP 810
1STIMATE6X,8HRESIDUAL) STEP 820
15 FORMAT(I7,F15.5,2F14.5) STEP 830
16 FORMAT(1H ) STEP 840
17 FORMAT(1H1) STEP 850
18 FORMAT(1H0,'****COLUMN',I4,' OF SELECTION CARD',I5,' IS IN ERROR. STEP 860
1 IT IS POSSIBLE THAT COLUMNS SUCCEEDING THAT COLUMN ARE ALSO' STEP 870
2/' INCORRECT. THE SELECTION IS IGNORED.****') STEP 880
19 FORMAT(1H0,'****SELECTION CARD',I5,' DOES NOT NAME ONE AND ONLY ONSTEP 890
1E DEPENDENT VARIABLE. SELECTION IGNORED.****') STEP 900
20 FORMAT(1H0,'****EITHER THE MATRIX IS SINGULAR, OR THE RESIDUAL SUMSTEP 910
1 OF SQUARES IS NEGATIVE IMPLYING EXTREME ILL CONDITION.',/,' SELECSTEP 920
2TION IGNORED.****') STEP 930
21 FORMAT(1H0,'****',I6,' OBSERVATIONS ARE TOO FEW TO ALLOW PARAMETERSTEP 940
1 ESTIMATION FOR',I5,' VARIABLES. JOB TERMINATED.****') STEP 950
C STEP 960
C READ PROBLEM PARAMETER CARD STEP 970
C STEP 980
100 READ (5,1,END=999) PR1,PR2,N,M,NS,PCT,NR STEP 990
C PR1.....PROBLEM CODE (MAY BE ALPHAMERIC) STEP1000
C PR2.....PROBLEM CODE (CONTINUED) STEP1010
C N ......NUMBER OF OBSERVATIONS STEP1020
C M ......NUMBER OF VARIABLES STEP1030
C NS......NUMBER OF SELECTIONS STEP1040
C PCT.....A CONSTANT VALUE OF PROPORTION OF SUM OF SQUARES THAT STEP1050
C WILL BE USED TO LIMIT VARIABLES ENTERING IN THE REGRES-STEP1060
C SION STEP1070
C NR......OPTION CODE FOR TABLE OF RESIDUALS STEP1080
C 0 - IF IT IS NOT DESIRED STEP1090
C 1 - IF IT IS DESIRED STEP1100
C STEP1110
WRITE (6,3) PR1,PR2 STEP1120
WRITE (6,9) N STEP1130
WRITE (6,10) M STEP1140
IF(N-M-2) 101,101,102 STEP1150
101 WRITE(6,21) N,M STEP1160
STOP STEP1170
102 WRITE (6,11) NS STEP1180
WRITE (6,12) PCT STEP1190
C STEP1200
C LOGICAL TAPE 13 IS USED AS INTERMEDIATE STORAGE TO HOLD INPUT STEP1210
C DATA. THE INPUT DATA ARE WRITTEN ON LOGICAL TAPE 13 BY THE STEP1220
C SPECIAL INPUT SUBROUTINE NAMED DATA. THE STORED DATA MAY BE USED STEP1230
C FOR RESIDUAL ANALYSIS. STEP1240
C STEP1250
REWIND 13 STEP1260
C STEP1270
IO=0 STEP1280
X=0.0 STEP1290
C STEP1300
CALL CORRE (N,M,IO,X,XBAR,STD,RX,R,B,D,T) STEP1310
C STEP1320
REWIND 13 STEP1330
C STEP1340
C PRINT MEANS AND STANDARD DEVIATION STEP1350
C STEP1360
WRITE (6,4) STEP1370
DO 105 I=1,M STEP1380
105 WRITE (6,5) I,XBAR(I),STD(I) STEP1390
C STEP1400
C PRINT CORRELATION MATRIX STEP1410
C STEP1420
WRITE (6,6) STEP1430
DO 130 I=1,M STEP1440
DO 125 J=1,M STEP1450
IF(I-J) 110, 120, 120 STEP1460
110 K=I+(J*J-J)/2 STEP1470
GO TO 125 STEP1480
120 K=J+(I*I-I)/2 STEP1490
125 T(J)=R(K) STEP1500
130 WRITE (6,7) I,(T(J),J=1,M) STEP1510
C STEP1520
C TEST NUMBER OF SELECTIONS STEP1530
C STEP1540
IF(NS) 135, 135, 140 STEP1550
135 WRITE (6,2) STEP1560
GO TO 200 STEP1570
C STEP1580
C SAVE THE MATRIX OF SUMS OF CROSS-PRODUCTS OF DEVIATIONS STEP1590
C STEP1600
140 CALL MSTR (RX,R,M,0,1) STEP1610
C STEP1620
NSEL=1 STEP1630
GO TO 150 STEP1640
C STEP1650
C COPY THE MATRIX OF SUMS OF CROSS-PRODUCTS OF DEVIATIONS STEP1660
C STEP1670
145 CALL MSTR (R,RX,M,1,0) STEP1680
C STEP1690
C READ A SELECTION CARD STEP1700
C STEP1710
150 WRITE (6,13) NSEL STEP1720
READ (5,8) (IDX(J),J=1,M) STEP1730
C STEP1740
C IN EACH POSITION OF IDX, ONE OF THE FOLLOWING CODES MUST BE STEP1750
C SPECIFIED.. STEP1760
C 0 OR BLANK - INDEPENDENT VARIABLE AVAILABLE FOR SELECTION STEP1770
C 1 - INDEPENDENT VARIABLE TO BE FORCED IN REGRESSION STEP1780
C 2 - VARIABLE TO BE DELETED STEP1790
C 3 - DEPENDENT VARIABLE STEP1800
C STEP1810
N35=0 STEP1820
DO 155 K=1,M STEP1830
IF (IDX(K)) 152,153,153 STEP1840
152 WRITE (6,18) K,NSEL STEP1850
GO TO 185 STEP1860
153 IF (IDX(K)-3) 155,154,152 STEP1870
154 N35=N35+1 STEP1880
155 CONTINUE STEP1890
IF (N35-1) 156,157,156 STEP1900
156 WRITE (6,19) NSEL STEP1910
GO TO 185 STEP1920
C CALL THE SUBROUTINE TO PERFORM A STEP-WISE REGRESSION ANALYSIS STEP1930
C STEP1940
157 CALL STPRG (M,N,RX,XBAR,IDX,PCT,NSTEP,ANS,L,B,STD,T,D,IER) STEP1950
IF (IER) 158,159,158 STEP1960
158 WRITE (6,20) STEP1970
GO TO 185 STEP1980
C STEP1990
C FIND WHETHER TO PRINT THE TABLE OF RESIDUALS STEP2000
C STEP2010
159 IF(NR) 185, 185, 160 STEP2020
C STEP2030
C PRINT THE TABLE OF RESIDUALS STEP2040
C STEP2050
C STEP2060
160 WRITE (6,13) NSEL STEP2070
WRITE (6,16) STEP2080
WRITE (6,14) STEP2090
MM=NSTEP(1) STEP2100
DO 180 I=1,N STEP2110
READ (13) (D(J),J=1,M) STEP2120
YEST=ANS(9) STEP2130
K=NSTEP(4) STEP2140
DO 170 J=1,K STEP2150
KK=L(J) STEP2160
170 YEST=YEST+B(J)*D(KK) STEP2170
RESI=D(MM)-YEST STEP2180
180 WRITE (6,15) I,D(MM),YEST,RESI STEP2190
REWIND 13 STEP2200
C STEP2210
C TEST TO SEE WHETHER ALL SELECTIONS ARE COMPLETED STEP2220
C STEP2230
185 IF(NSEL-NS) 190, 100, 100 STEP2240
190 NSEL=NSEL+1 STEP2250
WRITE (6,17) STEP2260
GO TO 145 STEP2270
C STEP2280
200 CONTINUE STEP2290
999 STOP
END STEP2300
$FORTRAN DATA
C DATA 10
C ..................................................................DATA 20
C DATA 30
C SAMPLE INPUT SUBROUTINE - DATA DATA 40
C DATA 50
C PURPOSE DATA 60
C READ AN OBSERVATION (M DATA VALUES) FROM INPUT DEVICE. DATA 70
C THIS SUBROUTINE IS CALLED BY THE SUBROUTINE CORRE AND MUST DATA 80
C BE PROVIDED BY THE USER. IF SIZE AND LOCATION OF DATA DATA 90
C FIELDS ARE DIFFERENT FROM PROBLEM TO PROBLEM, THIS SUB- DATA 100
C ROUTINE MUST BE RECOMPILED WITH A PROPER FORMAT STATEMENT. DATA 110
C DATA 120
C USAGE DATA 130
C CALL DATA (M,D) DATA 140
C DATA 150
C DESCRIPTION OF PARAMETERS DATA 160
C M - THE NUMBER OF VARIABLES IN AN OBSERVATION. DATA 170
C D - OUTPUT VECTOR OF LENGTH M CONTAINING THE OBSERVATION DATA 180
C DATA. DATA 190
C DATA 200
C REMARKS DATA 210
C THE TYPE OF CONVERSION SPECIFIED IN THE FORMAT MUST BE DATA 220
C EITHER F OR E. DATA 230
C DATA 240
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED DATA 250
C NONE DATA 260
C ..................................................................DATA 270
C DATA 280
SUBROUTINE DATA (M,D) DATA 290
C DATA 300
DIMENSION D(1) DATA 310
C DATA 320
1 FORMAT(12F6.0) DATA 330
C DATA 340
C READ AN OBSERVATION FROM INPUT DEVICE. DATA 350
C DATA 360
READ (5,1) (D(I),I=1,M) DATA 370
C DATA 380
C INPUT DATA ARE WRITTEN ON LOGICAL TAPE 13 FOR THE RESIDUAL ANALY- DATA 390
C SIS PERFORMED IN THE SAMPLE MULTIPLE REGRESSION PROGRAM. DATA 400
C DATA 410
WRITE (13) (D(I),I=1,M) DATA 420
RETURN DATA 430
END DATA 440
$FORTRAN STOUT
C STOU 10
C ..................................................................STOU 20
C STOU 30
C SAMPLE OUTPUT SUBROUTINE STOUT STOU 40
C STOU 50
C PURPOSE STOU 60
C PRINT THE RESULT OF A STEP-WISE MULTIPLE REGRESSION. THIS STOU 70
C SUBROUTINE IS CALLED BY THE SUBROUTINE STPRG. STOU 80
C STOU 90
C USAGE STOU 100
C CALL STOUT (NSTEP,ANS,L,B,S,T,NSTOP) STOU 110
C STOU 120
C DESCRIPTION OF PARAMETERS STOU 130
C NSTEP - INPUT VECTOR OF LENGTH 5 CONTAINING THE FOLLOWING STOU 140
C INFORMATION.. STOU 150
C NSTEP(1) DEPENDENT VARIABLE STOU 160
C NSTEP(2) NUMBER OF VARIABLES FORCED TO ENTER STOU 170
C IN THE REGRESSION STOU 180
C NSTEP(3) NUMBER OF VARIABLES DELETED STOU 190
C NSTEP(4) THE LAST STEP NUMBER STOU 200
C NSTEP(5) THE LAST VARIABLE ENTERED STOU 210
C ANS - INPUT VECTOR OF LENGTH 11 CONTAINING THE FOLLOWING STOU 220
C INFORMATION FOR THE LAST STEP.. STOU 230
C ANS(1) SUM OF SQUARES REDUCED STOU 240
C ANS(2) PROPORTION REDUCED STOU 250
C ANS(3) CUMULATIVE SUM OF SQUARES REDUCED STOU 260
C ANS(4) CUMULATIVE PROPORTION REDUCED STOU 270
C ANS(5) SUM OF SQUARES OF THE DEPENDENT VARIABLE STOU 280
C ANS(6) MULTIPLE CORRELATION COEFFICIENT STOU 290
C ANS(7) F-VALUE FOR ANALYSIS VARIANCE (FOR THE STOU 300
C REGRESSION) STOU 310
C ANS(8) STANDARD ERROR OF ESTIMATE STOU 320
C ANS(9) INTERCEPT STOU 330
C ANS(10) ADJUSTED MULTIPLE R STOU 340
C ANS(11) ADJUSTED STANDARD ERROR OF ESTIMATE STOU 350
C L - INPUT VECTOR OF LENGTH K (K=M-NSTEP(3)-1) CONTAIN- STOU 360
C ING VARIABLES ENTERED IN THE REGRESSION. L(1)=FIRSTSTOU 370
C VARIABLE ENTERED, L(2)=SECOND VARIABLE ENTERED, ETC.STOU 380
C B - INPUT VECTOR OF LENGTH K (K=M-NSTEP(3)-1) CONTAIN- STOU 390
C ING REGRESSION COEFFICIENTS CORRESPONDING TO THE STOU 400
C VARIABLES IN VECTOR L STOU 410
C S - INPUT VECTOR OF LENGTH K (K=M-NSTEP(3)-1) CONTAIN- STOU 420
C ING STANDARD ERRORS OF REGRESSION COEFFICIENTS STOU 430
C CORRESPONDING TO THE VARIABLES IN VECTOR L STOU 440
C T - INPUT VECTOR OF LENGTH K (K=M-NSTEP(3)-1) CONTAIN- STOU 450
C ING COMPUTED T-VALUES CORRESPONDING TO THE VARIABLESSTOU 460
C IN VECTOR L STOU 470
C NSTOP - OUTPUT OPTION CODE TO STOP THE STEP-WISE REGRESSION STOU 480
C 1 - IF THE STEP-WISE REGRESSION IS TO BE TERMI- STOU 490
C NATED BY SOME CRITERIA OTHER THAN PROPORTION STOU 500
C OF SUM OF SQUARES, SUCH AS F-TEST AND SO ON, STOU 510
C THIS SUBROUTINE MAY BE MODIFIED TO PERFORM STOU 520
C DESIRED TESTS. WHEN IT BECOMES NO LONGER STOU 530
C NECESSARY TO CONTINUE THE STEP-WISE REGRES- STOU 540
C SION, SET NSTOP EQUAL TO 1. STOU 550
C 0 - IF THE STEP-WISE REGRESSION IS TO BE CONTINUEDSTOU 560
C STOU 570
C REMARKS STOU 580
C THE CONTENTS OF THE VECTORS NSTEP, ANS, L ARE REQUIRED IN STOU 590
C SUBSEQUENT STEPS AND MUST NOT BE DESTROYED. STOU 600
C STOU 610
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED STOU 620
C NONE STOU 630
C STOU 640
C STOU 650
C ..................................................................STOU 660
C STOU 670
SUBROUTINE STOUT (NSTEP,ANS,L,B,S,T,NSTOP) STOU 680
C STOU 690
DIMENSION NSTEP(1),ANS(1),L(1),B(1),S(1),T(1) STOU 700
C STOU 710
C ..................................................................STOU 720
C STOU 730
C IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE STOU 740
C C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION STOU 750
C STATEMENT WHICH FOLLOWS. STOU 760
C STOU 770
C DOUBLE PRECISION ANS,B,S,T STOU 780
C STOU 790
C THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS STOU 800
C APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS STOU 810
C ROUTINE. STOU 820
C STOU 830
C ..................................................................STOU 840
C STOU 850
1 FORMAT(/5H1STEPI3) STOU 860
2 FORMAT(22H0VARIABLE ENTERED.....I2) STOU 870
3 FORMAT(40H0SUM OF SQUARES REDUCED IN THIS STEP....F13.3) STOU 880
4 FORMAT(40H PROPORTION REDUCED IN THIS STEP........F13.3) STOU 890
5 FORMAT(40H0CUMULATIVE SUM OF SQUARES REDUCED......F13.3) STOU 900
6 FORMAT(40H CUMULATIVE PROPORTION REDUCED..........F13.3,4H OFF13.STOU 910
13) STOU 920
7 FORMAT(4H0FORI3,18H VARIABLES ENTERED) STOU 930
8 FORMAT(38H MULTIPLE CORRELATION COEFFICIENT...F9.3) STOU 940
9 FORMAT(38H F-VALUE FOR ANALYSIS OF VARIANCE...F9.3) STOU 950
10 FORMAT(38H STANDARD ERROR OF ESTIMATE.........F9.3) STOU 960
11 FORMAT(/57H VARIABLE REGRESSION STD. ERROR OF COMPUTSTOU 970
1ED/56H NUMBER COEFFICIENT REG. COEFF. T-VALUE) STOU 980
12 FORMAT(5X,I3,F18.5,F16.5,F14.3) STOU 990
13 FORMAT(12H INTERCEPTF14.5) STOU1000
14 FORMAT(31H0DEPENDENT VARIABLE............I2) STOU1010
15 FORMAT(31H NUMBER OF VARIABLES FORCED....I2) STOU1020
16 FORMAT(31H NUMBER OF VARIABLES DELETED...I2) STOU1030
17 FORMAT(20H (FORCED VARIABLE)) STOU1040
18 FORMAT(38H (ADJUSTED FOR D.F.)...........F9.3) STOU1050
C STOU1060
C TEST WHETHER THIS IS THE FIRST STEP STOU1070
C STOU1080
IF(NSTEP(4)-1) 30, 30, 35 STOU1090
30 WRITE (6,14) NSTEP(1) STOU1100
WRITE (6,15) NSTEP(2) STOU1110
WRITE (6,16) NSTEP(3) STOU1120
C STOU1130
C PRINT THE RESULT OF A STEP STOU1140
C STOU1150
35 WRITE (6,1) NSTEP(4) STOU1160
WRITE (6,2) NSTEP(5) STOU1170
IF(NSTEP(4)-NSTEP(2)) 37, 37, 38 STOU1180
37 WRITE (6,17) STOU1190
38 WRITE (6,3) ANS(1) STOU1200
WRITE (6,4) ANS(2) STOU1210
WRITE (6,5) ANS(3) STOU1220
WRITE (6,6) ANS(4), ANS(5) STOU1230
WRITE (6,7) NSTEP(4) STOU1240
WRITE (6,8) ANS(6) STOU1250
WRITE(6,18)ANS(10) STOU1260
WRITE (6,9) ANS(7) STOU1270
WRITE (6,10) ANS(8) STOU1280
WRITE(6,18)ANS(11) STOU1290
WRITE (6,11) STOU1300
N=NSTEP(4) STOU1310
DO 40 I=1,N STOU1320
40 WRITE (6,12) L(I),B(I),S(I),T(I) STOU1330
WRITE (6,13) ANS(9) STOU1340
C STOU1350
NSTOP=0 STOU1360
RETURN STOU1370
END STOU1380
$DECK STE.CDR
SAMPLE 30 6 2 0.001 20
29 289 216 85 14 1 30
30 391 244 92 16 2 40
30 424 246 90 18 2 50
30 313 239 91 10 0 60
35 243 275 95 30 2 70
35 365 219 95 21 2 80
43 396 267 100 39 3 90
43 356 274 79 19 2 100
44 346 255 126 56 3 110
44 156 258 95 28 0 120
44 278 249 110 42 4 130
44 349 252 88 21 1 140
44 141 236 129 56 1 150
44 245 236 97 24 1 160
45 297 256 111 45 3 170
45 310 262 94 20 2 180
45 151 339 96 35 3 190
45 370 357 88 15 4 200
45 379 198 147 64 4 210
45 463 206 105 31 3 220
45 316 245 132 60 4 230
45 280 225 108 36 4 240
44 395 215 101 27 1 250
49 139 220 136 59 0 260
49 245 205 113 37 4 270
49 373 215 88 25 1 280
51 224 215 118 54 3 290
51 677 210 116 33 4 300
51 424 210 140 59 4 310
51 150 210 105 30 0 320
000003 330
001203 340
$EOD
.ASSIGN CDR 5
.ASSIGN LPT 6
.ASSIGN DSK 13
.SET CDR STE
.EXECUTE/REL STEPR,DATA,STOUT,WES:SSP/LIB
%FIN::
.DELETE STE.CDR,FOR13.DAT