Trailing-Edge
-
PDP-10 Archives
-
klad_sources
-
klad.sources/dakakm.mac
There are no other files named dakakm.mac in the archive.
SUBTTL DIAGNOSTIC SECTION
EXIT: DROPDV ;CLOSE LOGICAL OUTPUT FILE
EXIT
PGMNAM: ASCIZ/
PDP-10 KA10 BASIC INSTRUCTION DIAGNOSTIC (11) [DAKAK]
/
;INITIALIZE
START: PGMINT
MOVE [ASCIZ/AK/]
MOVEM TLET ;INITIALIZE TEST LETTER
STARTA: JRST F00 ;GO PERFORM DIAGNOSTIC
SUBTTL DIAGNOSTIC SECTION - MPY TEST - ZERO PRODUCT
ADR=3000
AC=14
E=<AC-2>&17
F00: SAVEAC (1,1)
;MULTIPLY 0 BY 0 TO GET PRODUCT OF 0
MOP1 (\ADR,0,-1,0,0,0)
AC=13
E=<AC-2>&17
SAVEAC (1,1)
XX=0
REPEAT ^D36, <
ADR=ADR+1
XX=XX+XX
IFE XX,<XX=1>
;MULTIPLY RIPPLED 1 BY 0 TO GET PRODUCT OF 0
MOP1 (\ADR,0,-1,XX,0,0)>
AC=12
E=<AC-2>&17
SAVEAC (1,1)
XX=0
REPEAT ^D36, <
ADR=ADR+1
XX=XX+XX+1
IFE <XX-1>,<XX=-2>
;MULTIPLY RIPPLED 0 BY 0 TO GET PRODUCT OF 0
MOP1 (\ADR,0,-1,XX,0,0)>
ADR=ADR+1
AC=14
E=<AC-2>&17
SAVEAC (1,1)
;MULTIPLY -1 BY 0 TO GET PRODUCT OF 0
MOP1 (\ADR,0,-1,-1,0,0)
SUBTTL DIAGNOSTIC SECTION - MULTIPLICATION ALGORITHM
AC=13
E=<AC-2>&17
SAVEAC (1,1)
XX=-1
;MULTIPLICAND=1
REPEAT ^D16,<
;TEST MULTIPLICATION ALGORITHM
;VERIFY THAT (-MPY SHIFT) WORKS AS SPECIFIED IN THE
;KI10 MULTIPLICATION ALGORITHM. I.E., THE TWO LEAST
;SIGNIFICANT BITS OF THE MULTIPLIER (C(AC)) ARE
;EXAMINED AND THEN THE MULTIPLICAND (C(E)) IS MULTIPLIED BY THEM.
;THIS PROCESS IS REPEATED 18 TIMES IN ORDER
;TO MULTIPLY ALL 36 BITS OF THE AC. THIS TEST IS
;EXECUTED 16 TIMES WITH C(AC)=0,1,3,4,..., 17 AND
;C(E)=1. IT IS EXECUTED ANOTHER 16 TIMES AS ABOVE
;EXCEPT C(E)=-1 TO VERIFY THAT THE ALGORITHM IS INDEPENDENT
;OF C(E).
ADR=ADR+1
XX=XX+1
MOP1 (\ADR,XX,-1,1,0,XX)>
AC=12
E=<AC-2>&17
SAVEAC (1,1)
XX=-1
;MULTIPLICAND=-1
REPEAT ^D16,<
;TEST MULTIPLICATION ALGORITHM
;VERIFY THAT (-MPY SHIFT) WORKS AS SPECIFIED IN THE
;KI10 MULTIPLICATION ALGORITHM, I.E., THE TWO LEAST
;SIGNIFICANT BITS OF THE MULTIPLIER (C(AC)) ARE
;EXAMINED AND THEN THE MULTIPLICAND (C(E)) IS MULTIPLIED BY THEM.
;THIS PROCESS IS REPEATED 18 TIMES IN ORDER
;TO MULTIPLY ALL 36 BITS OF THE AC. THIS TEST IS
;EXECUTED 16 TIMES WITH C(AC)=0, 1,2,3,4, . . ., 17 AND
;C(E)=1. IT IS EXECUTED ANOTHER 16 TIMES AS ABOVE
;EXCEPT C(E)=-1 TO VERIFY THAT THE ALGORITHM IS INDEPENDENT
;OF C(E).
ADR=ADR+1
XX=XX+1
MX=-XX
IFE XX,<
V1=-1
V2=0>
IFN XX,<
V1=0
V2=-1>
MOP1 (\ADR,XX,V1,-1,V2,MX)>
SUBTTL DIAGNOSTIC SECTION - MPY TEST - ZERO PRODUCT
AC=11
E=<AC-2>&17
SAVEAC (1,1)
XX=0
REPEAT ^D36, <
ADR=ADR+1
XX=XX+XX
IFE XX,<XX=1>
;MULTIPLY 0 BY RIPPLED 1 TO GET PRODUCT OF ZERO
MOP1 (\ADR,XX,-1,0,0,0)>
AC=10
E=<AC-2>&17
SAVEAC (1,1)
XX=0
REPEAT ^D36,<
ADR=ADR+1
XX=XX+XX+1
IFE <XX-1>,<XX=-2>
;MULTIPLY 0 BY RIPPLED 0 TO GET PRODUCT OF 0
MOP1 (\ADR,XX,-1,0,0,0)>
AC=7
E=<AC-2>&17
SAVEAC (1,1)
ADR=ADR+1
;MULTIPLY 0 BY -1 TO GET PRODUCT OF 0
MOP1 (\ADR,-1,-1,0,0,0)
SUBTTL DIAGNOSTIC SECTION - MPY TEST - NON-ZERO PRODUCT
AC=6
E=<AC-2>&17
SAVEAC (1,1)
XX=0
REPEAT ^D36, <
ADR=ADR+1
XX=XX+XX
IFE XX,<XX=1>
;MULTIPLY A RIPPLED 1 BY 1 TO GET A PRODUCT OF RIPPLED 1
IFG XX,<V1=0>
IFL XX,<V1=-1>
MOP1 (\ADR,1,-1,XX,V1,XX)>
AC=5
E=<AC-2>&17
SAVEAC (1,1)
XX=0
REPEAT ^D35,< ;LAST CASE IS DIFFERENT
ADR=ADR+1
XX=XX+XX
IFE XX,<XX=1>
;MULTIPLY A 1 BY A RIPPLED 1 TO GET PRODUCT OF RIPPLED 1
IFG XX,<V1=0>
IFL XX,<V1=-1>
MOP1 (\ADR,XX,-1,1,V1,XX)>
;MULTIPLY A 1 BY 400000,,0
XX=400000000000
ADR=ADR+1
MOP1 (\ADR,XX,-1,1,1,0)
AC=4
E=<AC-2>&17
SAVEAC (1,1)
XX=0
REPEAT ^D36,<
ADR=ADR+1
XX=XX+XX
IFE XX,<XX=1>
;MULTIPLY A RIPPLED ONE BY -1
IFG XX,<
V1=-1
V2=-XX>
IFL XX,<
V1=1
V2=0>
MOP1 (\ADR,-1,0,XX,V1,V2)>
AC=3
E=<AC-2>&17
SAVEAC (1,1)
XX=0
REPEAT ^D35,< ;LAST CASE IS DIFFERENT
ADR=ADR+1
XX=XX+XX
IFE XX,<XX=1>
;MULTIPLY -1 BY A RIPPLED 1
IFG XX,<
V1=-1
V2=-XX>
IFL XX,<
V1=1
V2=0>
MOP1 (\ADR,XX,0,-1,V1,V2)>
;MULTIPLY A -1 BY 400000,,0
ADR=ADR+1
XX=400000000000
MOP1 (\ADR,XX,0,-1,-1,XX)
AC=2
E=<AC-2>&17
SAVEAC (1,1)
XX=0
REPEAT ^D36,<
ADR=ADR+1
XX=XX+XX+1
IFE <XX-1>,<XX=-2>
;MULTIPLY RIPPLED 0 BY 1 TO GET PRODUCT OF RIPPLED 0
IFL XX,<V1=-1>
IFG XX,<V1=0>
MOP1 (\ADR,1,0,XX,V1,XX)>
AC=10
E=<AC-2>&17
SAVEAC (1,1)
XX=0
REPEAT ^D36,<
ADR=ADR+1
XX=XX+XX+1
IFE <XX-1>,<XX=-2>
;MULTIPLY 1 BY RIPPLED 0 TO GET PRODUCT OF RIPPLED 0
IFL XX,<V1=-1>
IFG XX,<V1=0>
MOP1 (\ADR,XX,0,1,V1,XX)>
AC=10
E=<AC-2>&17
SAVEAC (1,1)
XX=0
REPEAT ^D36, <
ADR=ADR+1
XX=XX+XX+1
IFE <XX-1>,<XX=-2>
;MULTIPLY A RIPPLED 0 BY -1
MX=-XX
IFL XX,<V1=0>
IFG XX,<V1=-1>
MOP1 (\ADR,-1,-1,XX,V1,MX)>
AC=14
E=<AC-2>&17
SAVEAC (1,1)
XX=0
REPEAT ^D36, <
ADR=ADR+1
XX=XX+XX+1
IFE <XX-1>,<XX=-2>
;MULTIPLY -1 BY A RIPPLED 0
MX=-XX
IFL XX,<V1=0>
IFG XX,<V1=-1>
MOP1 (\ADR,XX,-1,-1,V1,MX)>
N1=525252525252
N2=252525252525
AC=13
E=<AC-2>&17
SAVEAC (1,1)
WW=^D36
XX=0
ZZ=0
REPEAT ^D35, < ;LAST CASE DIFFERENT
ADR=ADR+1
WW=WW-1
XX=XX+XX
ZZ=ZZ+1
IFE XX,<ZZ=0>
IFE XX,<XX=1>
;MULTIPLY 1010...1010 BY A FLOATING 1
V1=N1
V2=<N1_ZZ>!1B0
IFE WW,<V2=0>
IFL XX,<V3=N2+1>
IFG XX,<V3=<<-1B<WW>>!<N1_<-WW>>>>
MOP1 (\ADR,XX,0,V1,V3,V2)>
;MULTIPLY A 1010...1010 BY 400000,,0
ADR=ADR+1
XX=400000000000
V1=525252525252
V3=525252525252
V2=400000000000
MOP1 (\ADR,XX,0,V1,V3,V2)
LAST1: JRST BEGEND